

Nano-Current Consumed, I_QSmart[™] LoadSwitch with Slew Rate Control

Product Specification

DESCRIPTION

The GLF71307 is an ultra-efficiency, 2.0 A rated, integrated load switch with integrated slew rate control. The best in class efficiency makes it an ideal choice for use in IoT, mobile, and wearable electronics.

The GLF71307 features an ultra-efficient I_QSmart^{TM} technology that supports the lowest quiescent current (I_Q) and shutdown current (I_{SD}) inx the industry. Low I_Q and I_{SD} solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

The GLF71307 integrated slew rate control greatly enhances system reliability by mitigating bus voltage swings during switching events. Where uncontrolled switches can generate high inrush currents that result in voltage droop and/or bus reset events, the GLF slew rate control specifically limits inrush currents during turn-on to minimize voltage droop.

The GLF71307 can be used in multiple voltage rail applications which helps to simplify inventory management and reduces operating cost.

The GLF71307 Load Switch device is small utilizing a wafer level chip scale package with 4 bumps in a 0.77 mm x 0.77 mm x 0.46 mm die size and a 0.4mm bump pitch.

FEATURES

Ultra-Low I_Q: 1 nA Typ @ 5.5 V_{IN}

Ultra-Low I_{SD}: 19 nA Typ @ 5.5 V_{IN}

• Low $R_{ON} = 34 \text{ m}\Omega \text{ Typ } @ 5.5 \text{ V}_{IN}$

Iout Max = 2.0 A

Wide Input Range: 1.1 V to 5.5 V

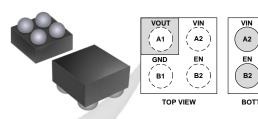
6 V abs max

• Controlled Rise Time: 9 us at 3.3 V_{IN}

• Internal EN Pull-Down Resistor

• Integrated Output Discharge Switch

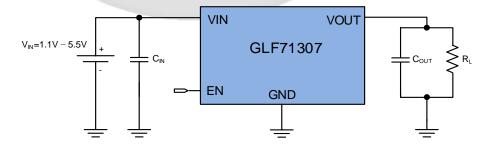
Temperature Range: - 40 to 85 °C


HBM: 6 kV, CDM: 2 kV

• Ultra-Small: 0.77 mm x 0.77 mm

APPLICATIONS

- Wearables
- Data Storage, SSD
- Mobile Devices
- Low Power Subsystems


PACKAGE

0.77 mm x 0.77 mm x 0.46 mm WLCSP

APPLICATION DIAGRAM

Rev.1.6 Feb 2022

VOUT

Α1

В1

ALTERNATE DEVICE OPTIONS

Part Number	Top Mark	R _{ON} (Typ) at 5.5 V	Output Discharge	EN Activity	Availability
GLF71307	S	34 mΩ	85 Ω	High	Released

FUNCTIONAL BLOCK DIAGRAM

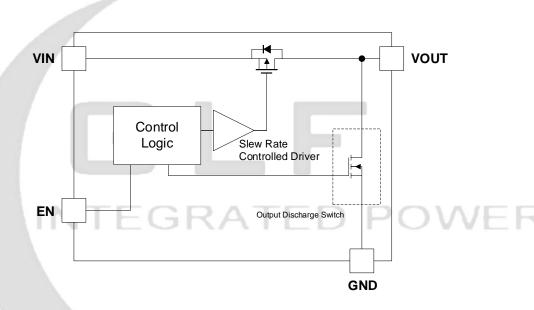


Figure 1. Functional Block Diagram

PIN CONFIGURATION

VIN

A2

ΕN

B2

VOUT

Α1

GND

В1

TOP VIEW

VIN VOUT A2 A1 EN GND B2 B1

BOTTOM VIEW

Figure 2. 0.77 mm x 0.7 7mm x 0.46 mm WLCSP

PIN DEFINITION

Pin#	Name	Description
A1	Vouт	Switch Output
A2	Vin	Switch Input. Supply Voltage for IC
B1	GND	Ground
B2	EN	Enable to control the switch

Nano-Current Consumed, I_QSmart[™] LoadSwitch with Slew Rate Control

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	P	Min.	Max.	Unit	
VIN, VOUT, VEN	Each Pin Voltage Range to GND	-0.3	6	V	
Іоит	Maximum Continuous Switch Curre	Maximum Continuous Switch Current			
P _D	Power Dissipation at T _A = 25 °C		1	W	
T _{STG}	Storage Temperature	-65	150	°C	
TA	Operating Temperature Range	-40	85	°C	
θЈΑ	Thermal Resistance, Junction to An		110	°C/W	
ESD	Electrontation Disable and Completities	Human Body Model, JESD22-A114	6		IAV.
	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2		kV

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	Supply Voltage	1.1	5.5	V
TA	Ambient Operating Temperature	-40	+85	°C

ELECTRICAL CHARACTERISTICS

Values are at V_{IN} = 3.3 V and T_A = 25 °C unless otherwise noted.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit	
Basic Ope	eration				•	•		
V _{IN}	Supply Voltage			1.1		5.5	V	
		EN = Enable, I _{OUT} =0 mA, V _{IN} = V _{EN} =5.5 V			1			
lα	Quiescent Current	EN=Enable, I _{OUT} =0 mA, V _{IN} =V _{EN} =5.5 V, Ta=85 °C (4)			7		− nA	
		EN = Disable, I _{OUT} =0 mA, V _{IN} =1.1 V			3			
İ		EN = Disable, I _{OUT} =0 mA, V _{IN} =1.8 V			4			
		EN = Disable, I _{OUT} =0 mA, V _{IN} =3.3 V			6		1.	
I _{SD}	Shutdown Current	EN = Disable, I _{OUT} =0 mA, V _{IN} =4.5 V			9		nA	
		EN = Disable, I _{OUT} =0 mA, V _{IN} =5.5 V			19	50		
		EN = Disable, I _{OUT} =0 mA, V _{IN} =5.5 V,	Ta=55 °C ⁽⁴⁾		110			
		EN = Disable, I _{OUT} =0 mA, V _{IN} =5.5 V,	Ta=85 °C ⁽⁴⁾		600			
		T	a=25 °C		34	47		
		V _{IN} =5.5 V, I _{OUT} = 500 mA	a=85 °C (4)		40		1	
		Т	a=25 °C		42	56	1	
Ron	On-Resistance	V _{IN} =3.3 V, I _{OUT} = 500 mA Ta=85 °C	a=85 °C (4)		50		mΩ	
		V _{IN} =1.8 V, I _{OUT} = 300 mA	a=25 °C		68			
		V _{IN} =1.2 V, I _{OUT} = 100 mA T	a=25 °C		125		3	
1		V _{IN} =1.1 V, I _{OUT} = 100 mA	Ta=25 °C		155		ĥ	
Rosc	Output Discharge Resistance	E _N =Low, I _{FORCE} = 10 mA		70	85	100	Ω	
\ <u>'</u>	EN Input Logic High	V _{IN} =1.1 V - 1.8 V		0.9			V	
ViH	Voltage	V _{IN} =1.8 V - 5.5 V		1.2			V	
\/	EN Input Logic Low	V _{IN} =1.1 V - 1.8 V		/		0.3	V	
V_{IL}	Voltage	V _{IN} =1.8 V - 5.5 V				0.4	V	
Ren	EN Pulldown resistance	Internal Resistance		7	10.1	13	МΩ	
I _{EN}	EN Current	E _N =5.5 V				0.8	μΑ	
Switching	Characteristics							
t _{dON}	Turn-On Delay(1)	D 450 0 0 0 0 4 v 5	-		7.4			
t _R	V _{OUT} Rise Time ⁽¹⁾	R_L =150 Ω, C_{OUT} =0.1 μF			8.7			
t _{dON}	Turn-On Delay(1,4)	R _L =500 Ω, C _{OUT} =0.1 μF			7.3		μs	
t _R	Vout Rise Time(1,4)				8.2			
t _{dOFF}	Turn-Off Delay(2,3,4)	R _L =10 Ω, C _{OUT} =0.1 μF			0.5			
t _F	Vout Fall Time(2,3,4)				1.0			
t _{dOFF}	Turn-Off Delay ^(2,3,4)	B500 O Co0.1 ::E			1.1			
t _F	Vout Fall Time(2,3,4)	R _L =500 Ω, C _{OUT} =0.1 μF			20.6		7	

Notes:

- 1. $t_{ON} = t_{dON} + t_{R}$
- 2. $t_{OFF} = t_{dOFF} + t_F$
- Output discharge path is enabled during off.
 By design; characterized; not production tested.

TIMING DIAGRAM

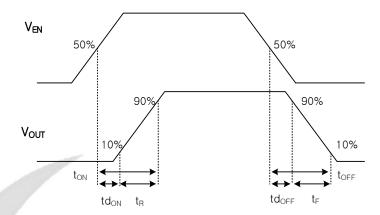
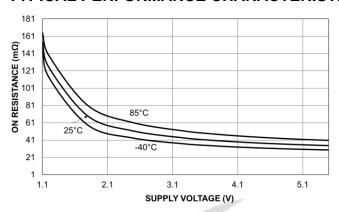
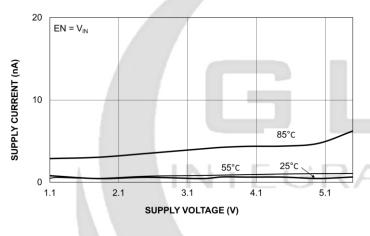



Figure 3. Timing Diagram


TYPICAL PERFORMANCE CHARACTERISTICS

180 160 V_{IN} = 1.1V ON RESISTANCE (mΩ) 140 120 100 80 60 $V_{IN} = 3.3V$ 40 $V_{IN} = 5.5V$ 20 $EN = V_{IN}$ 0 -15 60 -40 85 T_J, JUNCTION TEMPERATURE (°C)

Figure 4. On-Resistance vs. Supply Voltage

Figure 5. On-Resistance vs. Temperature

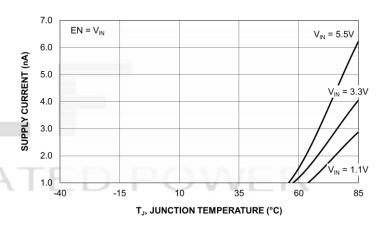
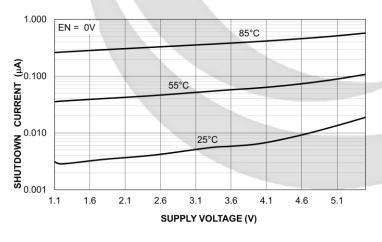



Figure 6. Quiescent Current vs. Supply Voltage

Figure 7. Quiescent Current vs. Temperature

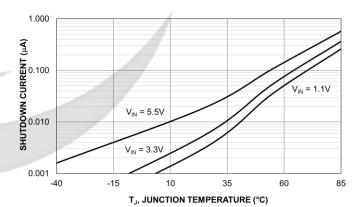
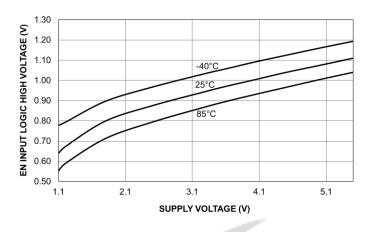



Figure 8. Shutdown Current vs. Supply Voltage

Figure 9. Shutdown Current vs. Temperature

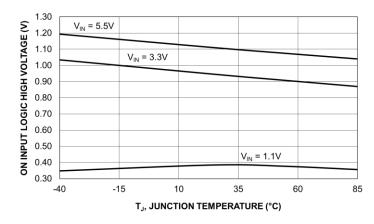
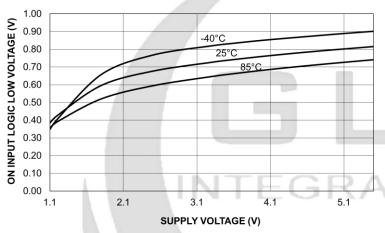



Figure 10. EN Input Logic High Threshold

Figure 11. EN Input Logic High Threshold Vs. Temperature

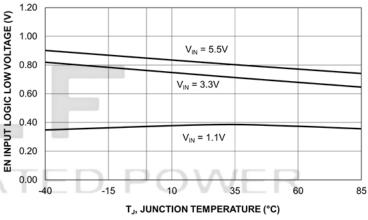
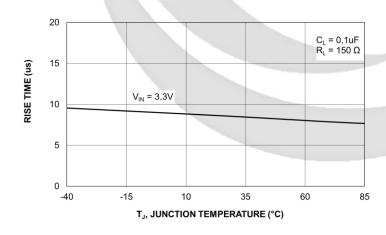



Figure 12. EN Input Logic Low Threshold

Figure 13. EN Input Logic Low Threshold Vs. Temperature

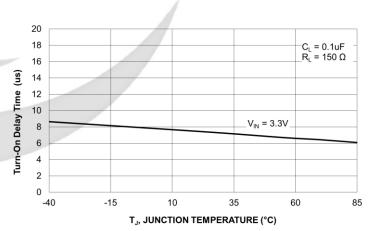


Figure 14. Vout Rise Time vs. Temperature

Figure 15. Turn-On Delay Time vs. Temperature

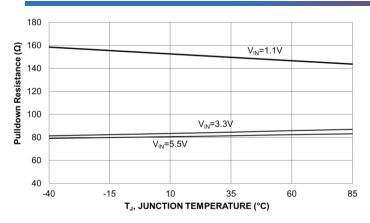


Figure 16. Pulldown Resistance vs. Temperature

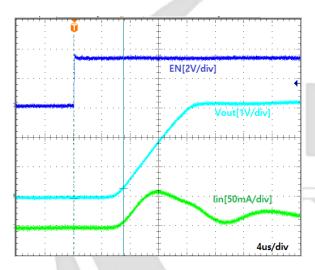


Figure 18. Turn-On Response $V_{\text{IN}}\text{=}3.3~V,~C_{\text{IN}}\text{=}1.0~uF,~C_{\text{OUT}}\text{=}0.1~uF,~R_{\text{L}}\text{=}150~\Omega$

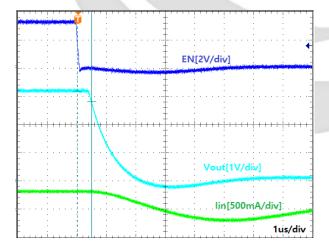


Figure 20. Turn-Off Response, Output Discharge $$V_{\text{IN}}$=3.3~V, C_{IN}=1.0~uF, C_{OUT}=0.1~uF, R_{L}=10~$\Omega$$

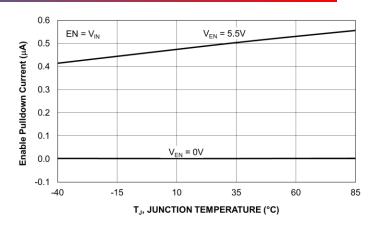


Figure 17. Enable Pulldown Current vs. Temperature

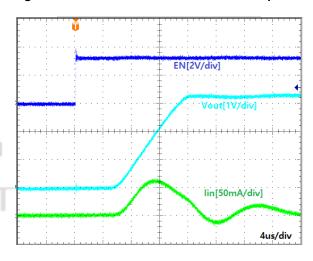


Figure 19. Turn-On Response $V_{\text{IN}}\text{=}3.3~V,\,C_{\text{IN}}\text{=}1.0~\text{uF},\,C_{\text{OUT}}\text{=}0.1~\text{uF},\,R_{\text{L}}\text{=}500~\Omega$

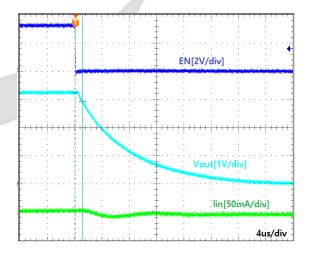


Figure 21. Turn-Off Response, Output Discharge V_{IN} =3.3 V, C_{IN} =1.0 uF, C_{OUT} =0.1 uF, R_L =500 Ω

Nano-Current Consumed, I_QSmart[™] LoadSwitch with Slew Rate Control

APPLICATION INFORMATION

The GLF71307 is an integrated 2.0 A, Ultra-Efficient I_QSmart[™] LoadSwitch device with a fixed slew rate control to limit the inrush current during turn on. Each device is capable of operating over a wide input range from 1.1 V to 5.5 V with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current to avoid unwanted standby current and save limited input power. The package is a 0.77 mm x 0.77 mm x 0.5 mm wafer level chip scale package, saving space in compact applications. It is constructed using 4 bumps, with a 0.4 mm pitch for manufacturability.

Input Capacitor

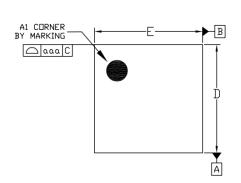
A capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

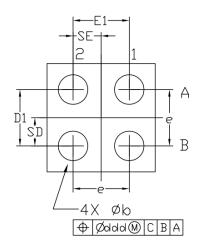
Output Capacitor

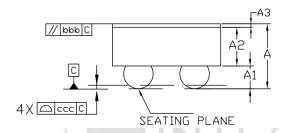
An output capacitor is recommended to mitigate voltage undershoot on the output pin the moment when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The Cout capacitor should be placed close to the VOUT and GND pins.

EN pin

The GLF71307 can be activated by EN pin high level. Note that the EN pin has an internal pull-down resistor to help pull the main switch to a known "off state" when no EN signal is applied from an external controller.


Output Discharge Function


The GLF71307 has an internal discharge N-channel FET switch on the VOUT pin. When EN signal turns the main power FET to an off state, the N-channel switch turns on to discharge an output capacitor quickly.


Board Layout

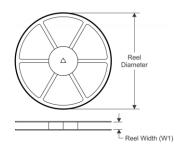
All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VIN, VOUT, and GND will help reduce voltage drops, and parasitic effects during dynamic operation as well as improve the thermal performance at high load currents.

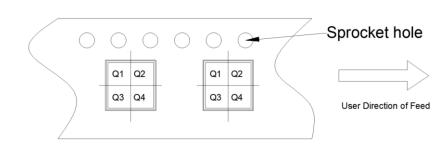
PACKAGE OUTLINE

Dimensional Ref.							
REF.	Min.	Min. Nom. Ma					
Α	0.410	0.460	0.510				
Α1	0.135	0.160	0.185				
A2	0.250	0.275	0.300				
Α3	0.020	0.025	0.030				
D	0.755	0.770	0.785				
Е	0.755	0.770	0.785				
D1	0.350	0.400	0.450				
E1	0.350	0.400	0.450				
Ь	0.170	0.210	0.250				
е	0	.400 BS	C				
SD	0	.200 BS	C				
SE	0	.200 BS	C				
To	ol. of Fo	rm&Pos	sition				
aaa	0.10						
ЬЬЬ	0.10						
ССС	0.05						
ddd		0.05					

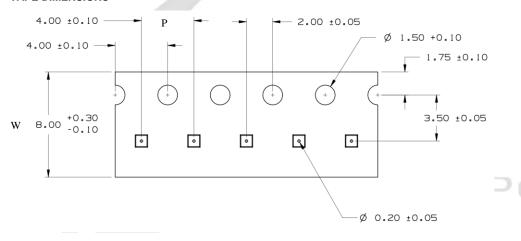
BRATED POWER

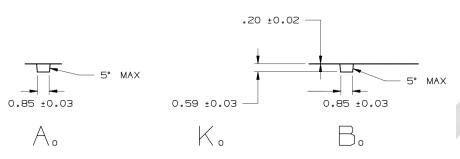
Notes


- 1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGRESS)
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 3. A3: BACKSIDE LAMINATION



TAPE AND REEL INFORMATION


REEL DIMENSIONS


QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

Device	Package	Pins	SPQ	Reel Diameter(mm)	Reel Width W1	Α0	В0	K0	Р	w	Pin1
GLF71307	WLCSP	4	4000	180	9	0.85	0.85	0.59	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

Nano-Current Consumed, I_QSmart[™] LoadSwitch with Slew Rate Control

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.