GLF71325

POWER Low Ron IoSmartTM Power Switch with Slew Rate Control

Product Specification

DESCRIPTION

The GLF71325 is an ultra-efficiency, 4 A rated, integrated load switch with integrated slew rate control. The best in class efficiency makes it an ideal choice for use in lower power subsystems and mobile electronics.

The GLF71325 features an ultra-efficient I_QSmart^{TM} technology that supports the lowest R_{ON} , quiescent current (I_Q) and shutdown current (I_{SD}) in the industry. Low R_{ON} reduces conduction losses, while low I_Q and I_{SD} solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

The GLF71325 integrated slew rate control greatly enhances system reliability by mitigating bus voltage swings during switching events. Where uncontrolled switches can generate high inrush currents that result in voltage droop and/or bus reset events, the GLF71325 slew rate control specifically limits inrush currents during turn-on to minimize voltage droop.

The GLF71325 can be used in multiple voltage rail applications which helps to simplify inventory management and reduces operating cost.

The GLF71325 offers best in class size and resistance performance utilizing a wafer level chip scale packaging with 6 bumps in a 0.97 mm x 1.47 mm x 0.55 mm die size and a 0.5 mm pitch.

FEATURES

Wide Input Range: 1.1 V to 5.5 V

 $6\;V_{abs}\;max$

Controlled Rise Time: 2.2 ms at 3.3V_{IN}

• Low R_{ON}: $18 \text{ m}\Omega$ Typ at 3.3V_{IN}

• Ultra-Low I_Q : 1 nA Typ at $3.3V_{IN}$

• Ultra-Low I_{SD}: 16 nA Typ at 3.3V_{IN}

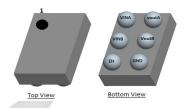
• I_{OUT} Max: 4 A at 5.5V_{IN}

• Internal EN Pull-Down Resistor

• Integrated Output Discharge Switch

• Wide Operating Temperature Range:

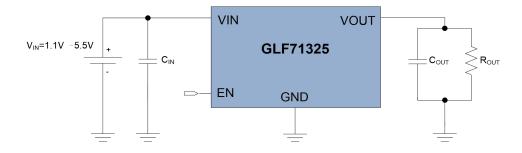
-40 °C ~ 105 °C


• HBM: 6 kV, CDM: 2 kV

• Package: 0.97 mm x 1.47 mm WLCSP

APPLICATIONS

- Low Power Subsystems
- Data Storage, SSD
- Mobile Devices


PACKAGE

0.97 mm x 1.47 mm x 0.55 mm 0.5 mm pitch WLCSP

APPLICATION DIAGRAM

Rev. 0.3 Aug 2023

ORDERING INFORMATION

Part Number	I on Mark		Output Discharge	EN Activity
GLF71325	HL	18 mΩ	80 Ω	High

FUNCTIONAL BLOCK DIAGRAM

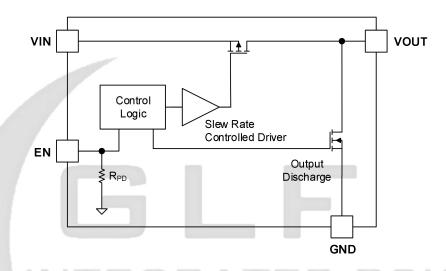


Figure 1. Functional Block Diagram

PIN CONFIGURATION

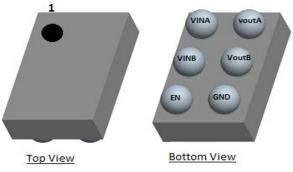


Figure 2. 0.97 mm x 1.47 mm x 0.55 mm WLCSP

PIN DEFINITION

Pin#	Name	Description
A1, B1	V _{оит}	Switch Output
A2, B2	V _{IN}	Switch Input. Supply Voltage for IC
C1	GND	Ground
C2	EN	Enable to control the switch

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Pa	Min.	Max.	Unit	
V_{IN},V_{OUT},V_{EN}	Each Pin Voltage Range to GND	-0.3	6	٧	
I _{OUT}	Maximum Continuous Switch Curre	ent		4	Α
P _D	Power Dissipation at T _A = 25°C		1.2	W	
T _{STG}	Storage Junction Temperature	-65	150	°C	
T _A	Operating Temperature Range	-40	105	°C	
θЈА	Thermal Resistance, Junction to A		85	°C/W	
ESD	Electrostatia Disabarra Carability	Human Body Model, JESD22-A114	6	3	147
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2		kV

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max.	Unit
V _{IN}	Supply Voltage	1.1	5.5	V
T _A	Ambient Operating Temperature	-40	105	°C

TEGRATED

ELECTRICAL CHRACTERISTICS

 V_{IN} = 1.1 V to 5.5 V, typical values are at V_{IN} = 3.3 V and T_A = 25 °C. Unless otherwise noted

Symbol	Parameter	Condition	ons	Min.	Тур.	Max.	Units
Basic Opera	ation						
V _{IN}	Supply Voltage			1.1		5.5	V
		EN = Enable, I _{OUT} =0 mA, V _{IN} = V _{EN} =3.3 V			1		
		EN=Enable, I _{OUT} =0 mA, V _{IN} =V _{EN} =3.3 V, Ta=85 °C (4)			7		
IQ	Quiescent Current	EN=Enable, I _{OUT} =0 mA, V _{IN} =V _{EN} =3.3 V, Ta=105 °C (4)			30		nA
IQ	Quiescent Current	EN = Enable, I_{OUT} =0 mA, V_{IN} = V_{EN} =5.5 V			3] IIA
		EN=Enable, I _{OUT} =0 mA, V _{IN} =V _{EN} =5.5V, Ta=85 °C ⁽⁴⁾			10		
		EN=Enable, I _{OUT} =0 mA, V _{IN} =V			40		
		EN = Disable, I_{OUT} =0 mA, V_{IN} =			9		
		EN = Disable, I_{OUT} =0 mA, V_{IN} =			11		nA
		EN = Disable, I_{OUT} =0 mA, V_{IN} =			16	25	
		EN = Disable, I _{OUT} =0 mA, V _{IN} =	=3.3 V, Ta=85 °C ⁽⁴⁾		1.1		μA
I _{SD}	Shutdown Current	EN = Disable, I _{OUT} =0 mA, V _{IN} =			4		μ, τ
130	Shatasiin Sanshi	EN = Disable, I _{OUT} =0 mA, V _{IN} =			30		
		EN = Disable, I _{OUT} =0 mA, V _{IN} =			50	100	nA
		EN = Disable, I _{OUT} =0 mA, V _{IN} =5.5 V, Ta=55 °C ⁽⁴⁾			250		
		EN = Disable, I _{OUT} =0 mA, V _{IN} =5.5 V, Ta=85 °C ⁽⁴⁾			1.7		μA
		EN = Disable, I _{OUT} =0 mA, V _{IN} =			5.5		μ, τ
	On-Resistance	V _{IN} =5.5 V I _{OUT} = 500 mA	Ta = 25 °C		15	17	
			Ta = 85 °C		17		
			Ta = 105 °C		18		
Ron			Ta = 25°C		18	21	mΩ
IXON		V _{IN} =3.3 V, I _{OUT} = 500 mA	Ta = 85 °C		21		
A			Ta = 105 °C		22		
A		I _{OUT} = 300 mA	V _{IN} =1.8 V	ノV	28		
		I _{OUT} = 100 mA	V _{IN} =1.1 V		55		
R _{DSC}	Output Discharge Resistance	E _N =Low, I _{FORCE} = 10 mA			80	100	Ω
		V _{IN} =1.1-1.8 V		0.9			V
V _{IH}	EN Input Logic High Voltage	V _{IN} =1.8-5.5 V		1.2			V
.,		V _{IN} =1.1-1.8 V				0.3	V
V _{IL}	EN Input Logic Low Voltage	V _{IN} =1.8-5.5 V				0.4	V
Ren	EN pull down resistance	E _N =5.5 V		7	10.1	13	ΜΩ
I _{EN}	EN Current	EN-3.5 V				8.0	μA
Switching C	haracteristics						
t _{dON}	Turn-On Delay ⁽¹⁾	R _{ουτ} =150 Ω, C _{ουτ} =1.0 μF			1.5		ms
t _R	V _{OUT} Rise Time ⁽¹⁾	- Νουτ- 130 Ω, Cout- 1.0 μΓ			2.2		ms
t _{dOFF}	Turn-Off Delay ^(2, 3, 4)	R _{ουτ} =150 Ω, C _{ουτ} =1.0 μF			9		μs
t _F	V _{OUT} Fall Time ^(2, 3, 4)	11001-100 12, 0001-1.0 μι			117		μs

Notes: 1. $t_{ON} = t_{dON} + t_{R}$

- 2. $t_{OFF} = t_{dOFF} + t_{F}$
- 3. Output discharge path is enabled during off.4. By design; characterized; not production tested.

TIMING DIAGRAM

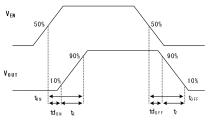


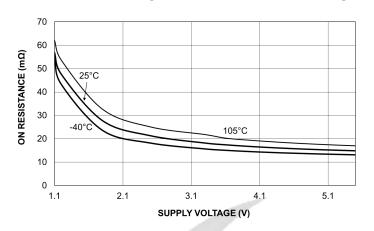
Figure 3. Timing Diagram

40

30

20

10


0

1.1

2.1

SUPPLY CURRENT (nA)

TYPICAL PERFORMANCE CHARACTERISTICS

70 $V_{IN} = 1.1V$ 60 ON RESISTANCE (mΩ) 50 40 30 $V_{IN} = 3.3V$ 20 $V_{IN} = 5.5V$ 10 $EN = V_{IN}$ -40 -15 10 35 60 85 110 T_J, JUNCTION TEMPERATURE (°C)

Figure 4. On-Resistance vs. Input Voltage

EN = V_{IN} 105°C

25°C

5.1

4.1

Figure 5. On-Resistance vs. Temperature

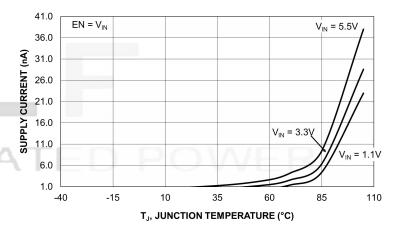


Figure 6. Quiescent Current vs. Input Voltage

3.1

SUPPLY VOLTAGE (V)

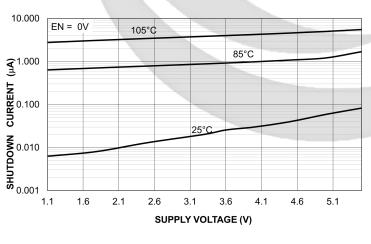


Figure 7. Quiescent Current vs. Temperature

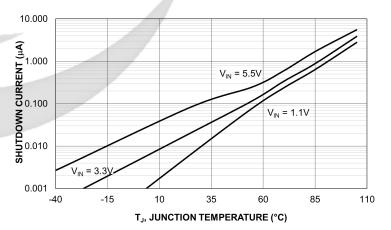
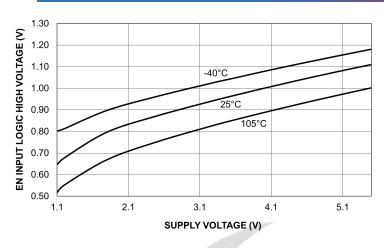



Figure 8. Shutdown Current vs. Input Voltage

Figure 9. Shutdown Current vs. Temperature

Low R_{ON} I_QSmart[™] Power Switch with Slew Rate Control

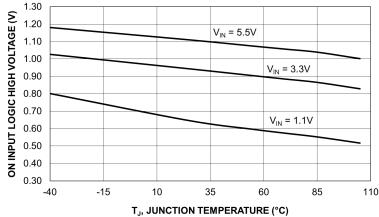
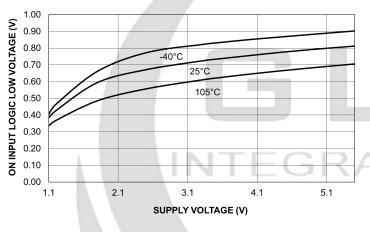



Figure 10. EN Input Logic High Threshold

Figure 11. EN Input Logic High Threshold Vs. Temperature

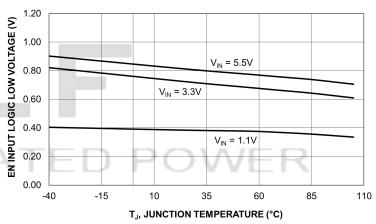
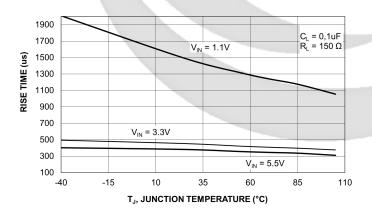



Figure 12. EN Input Logic Low Threshold

Figure 13. EN Input Logic Low Threshold Vs. Temperature

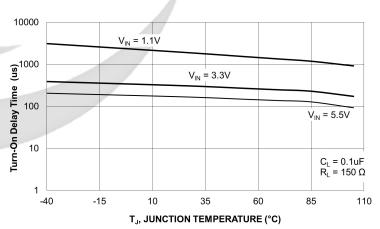
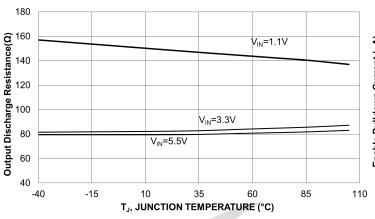



Figure 14. Vout Rise Time vs. Temperature

Figure 15. Turn-On Delay Time vs. Temperature

Low R_{ON} I_QSmart[™] Power Switch with Slew Rate Control

0.7 $EN = V_{IN}$ 0.6 Enable Pulldown Current (μA) $V_{EN} = 5.5V$ 0.5 0.4 0.3 0.2 0.1 $V_{EN} = 0V$ 0.0 -0.1 -15 10 35 60 85 -40 110 T_J, JUNCTION TEMPERATURE (°C)

Figure 16. Output Discharge Resistance vs. Temperature

Figure 17. Enable Pulldown Current vs. Temperature

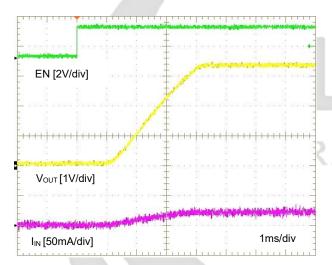


Figure 18. Turn-On Response V_{IN} =3.3 V, C_{OUT} =1.0 μ F, R_L =150 Ω

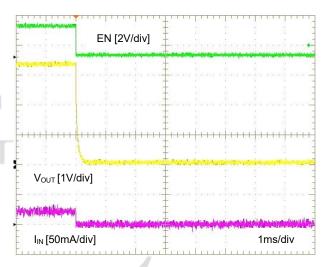


Figure 19. Turn-Off Response V_{IN} =3.3 V, C_{OUT} =1.0 μ F, R_L =150 Ω

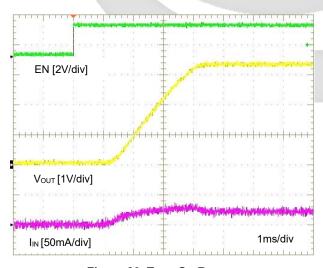


Figure 20. Turn-On Response V_{IN} =3.3 V, C_{OUT} =10 μF , R_L =150 Ω

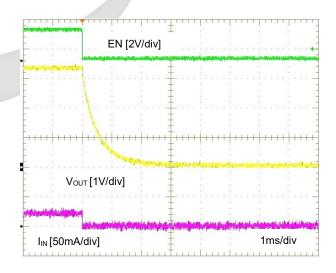


Figure 21. Turn-Off Response V_{IN} =3.3 V, C_{OUT} =10 μF , R_L =150 Ω

Low R_{ON} I_QSmart[™] Power Switch with Slew Rate Control

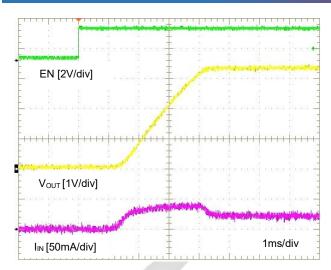


Figure 22. Turn-On Response V_{IN} =3.3 V, C_{OUT} =22 μ F, R_L =150 Ω

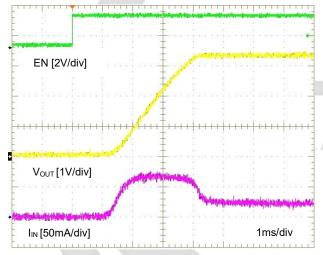


Figure 24. Turn-On Response V_{IN} =3.3 V, C_{OUT} =47 μF , R_L =150 Ω

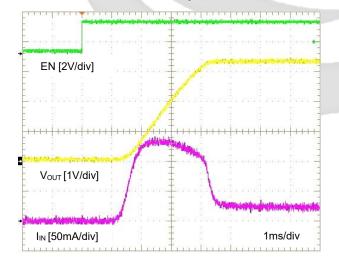


Figure 26. Turn-On Response V_{IN} =3.3 V, C_{OUT} =100 μF , R_L =150 Ω

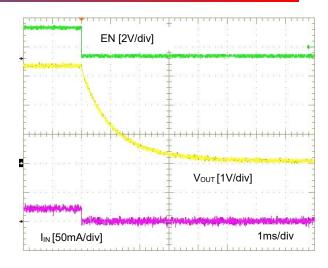


Figure 23. Turn-Off Response V_{IN} =3.3 V, C_{OUT} =22 μ F, R_L =150 Ω

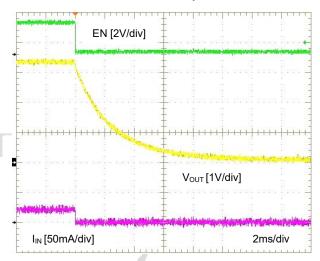


Figure 25. Turn-Off Response V_{IN} =3.3 V, C_{OUT} =47 μ F, R_L =150 Ω

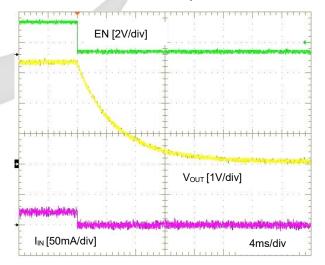


Figure 27. Turn-On Response V_{IN} =3.3 V, C_{OUT} =100 μF , R_L =150 Ω

GLF71325

Low R_{ON} I_OSmart[™] Power Switch with Slew Rate Control

APPLICATION INFORMATION

The GLF71325 is an integrated 4 A, Ultra-efficient I_QSmart^{TM} load switch device with a fixed slew rate control to limit the inrush current during turn on. Each device is capable of operating over a wide input range from 1.1 V to 5.5 V with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current to avoid unwanted standby current and save limited input power. The package is a 0.97 mm x 1.47 mm x 0.55 mm wafer level chip scale package, saving space in compact applications. It is constructed using 6 bumps, with a 0.5 mm pitch for reliable manufacturability.

Input Capacitor

A capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

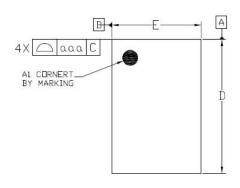
Output Capacitor

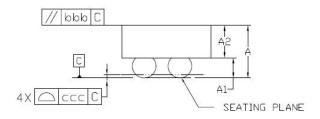
An output capacitor is recommended to mitigate voltage undershoot on the output pin the moment when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The Cout capacitor should be placed close to the VOUT and GND pins.

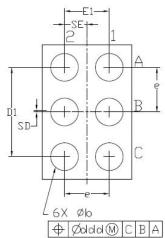
EN pin

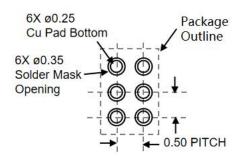
The GLF71325 can be activated by EN pin high level. Note that the EN pin has an internal pull-down resistor to help pull the main switch to a known "off state" when no EN signal is applied from an external controller.

Output Discharge Function


The GLF71325 has an internal discharge N-channel FET switch on the VOUT pin. When EN signal turns the main power FET to an off state, the N-channel switch turns on to discharge an output capacitor quickly.


Board Layout

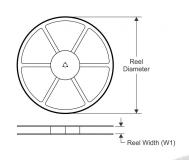

All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VIN, VOUT, and GND will help reduce voltage drops, and parasitic effects during dynamic operation as well as improve the thermal performance at high load currents.

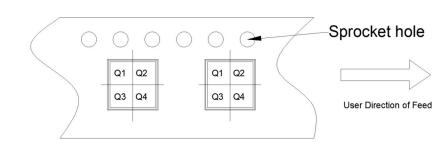

PACKAGE OUTLINE

Recommended Footprint

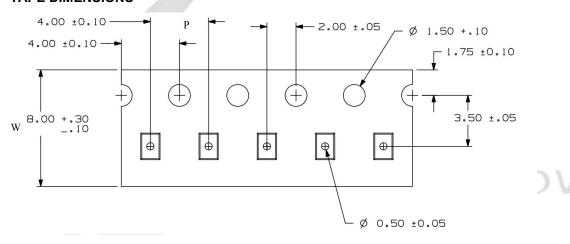
	Dimensional Ref.								
REF.	Min.	Nom.	Max.						
Α	0.500	0.550	0.600						
A1	0.225	0.250	0.275						
A2	0.275	0.300	0.325						
D	1.460	1.470	1.485						
Е	0.960	0.970	0.985						
D1	0.950	1.000	1.050						
E1	0.450	0.500	0.550						
Ь	0.260	0.310	0.360						
е	0.500 BSC								
SD	0	.000 BS	C						
SE	0	.250 BS	C						
To	ol. of Fo	rm&Pos	sition						
999		0.10							
ььь									
CCC	0.10 0.05								
ddd		0.05							

Notes


- 1, ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.



TAPE AND REEL INFORMATION


REEL DIMENSIONS

QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

Device	Package	Pins	SPQ	Reel Diameter (mm)	Reel Width W1	A0	В0	K0	Р	w	Pin1
GLF71325	WLCSP	6	3000	180	9	1.18	1.68	0.83	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status			
Target Specification					
Preliminary Specification	Y I Change the checitication at any time Without Warning or notification A I				
Product Specification	The decement represents the dimerparter production performance				

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.