Product Specification

DESCRIPTION

The GLF71430 / GLF71431 is an ultra-efficient, 7 A rated, integrated load switch with the VariRise™ technology which provides the programmable slew rate of variable output voltage rising times.

The GLF71430 / GLF71431 features the ultraefficient I_QSmart^{TM} technology that supports some of the lowest R_{ON} , quiescent currents (I_Q) and shutdown currents (I_{SD}) in the industry. Low R_{ON} reduces conduction losses, while low I_Q and I_{SD} solutions help designers to reduce parasitic leakage currents, improve system efficiency, and increase battery lifetimes.

The PGM input pin allows the user to add an external resistor to set the slew rate of the switch output voltage to a specific value for a given output capacitance. It limits inrush currents during turn-on, helping to minimize voltage droop.

The GLF71430 / GLF71431 offers best in class size and on-resistance (R_{ON}) performance. It uses chip scale packaging which utilizes 12 bumps, in a 1.27 mm x 1.67 mm die size with 0.4 mm pitch.

APPLICATIONS

- Low Power Subsystems
- Communication / Network System
- Smart Mobile Devices
- Storage Devices

FEATURES

- Supply Voltage Range: 1.5 V to 5.5 V
- Low R_{ON} : 10 m Ω Typ. at 5.5 V_{IN}
- VariRise[™] Programmable V_{OUT} Rising Time
- 7 A Continuous Output Current
- Ultra-Low Quiescent Current
 - I_Q: 10 nA Typ. at 5.5 V_{IN}
- Ultra-Low Stand-by Current
 - I_{SD}: GLF71430, 10 nA Typ. at 5.5 V_{IN}
 - I_{SD}: GLF71431, 55 nA Typ. at 5.5 V_{IN}
- Output Discharge Switch: GLF71431
- Wide Operating Temperature Range:
 - 40 °C to 105 °C
- 1.27 mm x 1.67 mm x 0.55 mm Wafer Level Chip Scale Packaging (WLCSP)

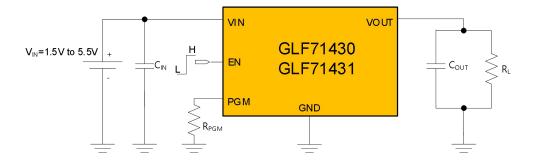
PACKAGE

VIN	VOUT	VOUT
(A3)	(A2)	(A1)
VIN	VIN	VOUT
(B3)	(B2)	(B1)
VIN	VIN	VOUT
(C3)	(C2)	(C1)
EN	GND	PGM
(D3)	(D2)	D1

VOUT	νουτ	ΛίΝ
(A1)	(A2)	(A3)
VOUT	VIN	VIN
(B1)	(B2)	(B3)
VOUT	VIN	VIN
(C1)	(C2)	(C3)
PGM	GND	ĘŅ
(D1)	(D2)	(D3)

BOTTOM VIEW

TOP VIEW


1.27 mm x 1.67 mm x 0.55 mm, 0.4 mm Pitch

ALTERNATE DEVICE OPTIONS

Part Number	Top Mark	R _{ON} (Typ) at 5.5 V	Output Discharge	EN Activity	Package
GLF71430	DA	10 mΩ	NA	High	WLCSP
GLF71431	Al	10 11122	85 Ω	High	WLCSP

7 A, VariRise[™] Programmable Slew Rate Controlled Switch

APPLICATION DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

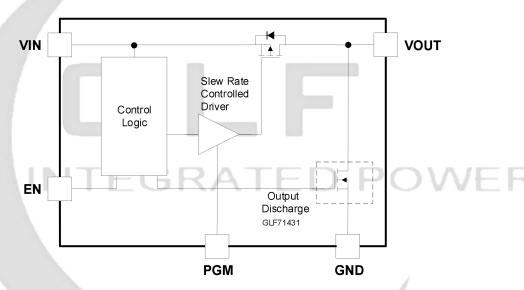


Figure 1. Functional Block Diagram

PIN CONFIGURATION

VOUT	VOUT	4	VOUT	VOUT	VΙΝ	
(A2)	(A1)		(A1)	(A2)	(A3)	
VIN	VOUT		VOUT	VIN	VIN	
(B2)	(B1)		(B1)	(B2)	(B3)	
VIN	VOUT		VOUT	VIN	VIN	
(C2)	(C1)		$(\widehat{c_1})$	$(\widehat{C2})$	$(\widehat{\mathbf{c}_3})$	
GND	PGM		PGM	GND	EN	
(D2)	(D1)		$(\widehat{D1})$	$(\widehat{D2})$	(D3)	
		Į	_'	_'	_']
BOTTOM VIEW			Т	OP VIEW	,	
	VIN B2 VIN C2 GND D2	A2 A1 VIN VOUT B2 B1 VIN VOUT C2 C1 GND PGM D2 D1	A2	A2	A2	A2 A1 (A1) (A2) (A3) VIN VOUT VIN VIN VIN VIN VOUT VIN VIN VIN VIN VOUT VIN VIN VIN (C1) (C2) (C3) (C3) GND PGM PGM GND EN (D1) (D2) (D3)

Figure 2. 1.27 mm x 1.67 mm x 0.55 mm WLCSP

PIN DEFINITION

Pin No.	Name	Description
A1, A2 B1, C1	VOUT	Switch Output
A3, B2, B3 C2, C3	VIN	Switch Input. Supply Voltage for IC
D1	PGM	Program pin to set the VOUT rising time with an external resistor.
D3	EN	Active high signal to enable the switch
D2	GND	Ground

GLF71430 / GLF71431

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Par	Parameter			
V _{IN} , V _{OUT} , V _{EN}	Each Pin Voltage Range to GND	-0.3	6	V	
I _{OUT}	Maximum Continuous Switch Current		7	Α	
P _D	Power Dissipation at T _A = 25°C		1.2	W	
T _{STG}	Storage Junction Temperature	-65	150	°C	
TA	Operating Temperature Range	-40	105	°C	
θ_{JA}	Thermal Resistance, Junction to Ambier		85	°C/W	
FCD	Flactrostatia Discharge Canability	Human Body Model, JESD22-A114	8		147
ESD	Electrostatic Discharge Capability Charged Device Model, JESD22-C101				kV

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	Supply Voltage	1.5	5.5	V
T _A	Ambient Operating Temperature	-40	+105	°C

ELECTRICAL CHARACTERISTICS

Rev.0.2 Mar 2024

 V_{IN} = 1.5 V to 5.5 V, typical values are at V_{IN} = 3.3 V and T_A = 25 °C. Unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Basic Oper	ation					
V _{IN}	Supply Voltage		1.5		5.5	V
		$V_{IN} = V_{EN} = 5.5 \text{ V}, I_{OUT}=0 \text{ mA},$		10	50	
lα	Quiescent Current (1)	V_{IN} = V_{EN} = 5.5 V, I_{OUT} =0 mA, T_A =85 °C $^{(4)}$	/	25		nA
		V_{IN} = V_{EN} = 5.5 V, I_{OUT} =0 mA, T_A =105 °C ⁽⁴⁾		92		
		EN = GND, I _{OUT} =0 mA, V _{IN} =1.5 V		4		
		EN = GND, I_{OUT} =0 mA, V_{IN} =2.5 V		5		
	Shutdown Current GLF71430	EN = GND, I _{OUT} =0 mA, V _{IN} =3.3 V		6	5	
		EN = GND, I _{OUT} =0 mA, V _{IN} =4.5 V		7		nA
		EN = GND, I _{OUT} =0 mA, V _{IN} =5.5 V		10	60	
		EN = GND, I _{OUT} =0 mA, V _{IN} =5.5 V, T _A = 85 °C (4)		45		
		EN = GND, I_{OUT} =0 mA, V_{IN} =5.5 V, T_A = 105 °C ⁽⁴⁾		170		
I _{SD}		EN = GND, I _{OUT} =0 mA, V _{IN} =1.5 V		7		
		EN = GND, I _{OUT} =0 mA, V _{IN} =2.5 V		10		
		EN = GND, I _{OUT} =0 mA, V _{IN} =3.3 V		12		nA
	Shutdown Current GLF71431	EN = GND, I _{OUT} =0 mA, V _{IN} =4.5 V		25		
		EN = GND, I _{OUT} =0 mA, V _{IN} =5.5 V		55	80	30
		EN = GND, I_{OUT} =0 mA, V_{IN} =5.5 V, T_A = 85 °C (4)		1.6		
		EN = GND, I_{OUT} =0 mA, V_{IN} =5.5 V, T_A = 105 °C ⁽⁴⁾		4.6		μA

Page 3

GLF71430 / GLF71431

7 A, VariRise[™] Programmable Slew Rate Controlled Switch

		T _A = 25 °C			10	13	
		V _{IN} =5.5 V I _{OUT} = 500 mA	T _A = 85 °C ⁽⁴⁾		12		
			T _A = 105 °C ⁽⁴⁾		13		mΩ
			T _A = 25 °C		13	16	11122
Ron	On-Resistance	V _{IN} =3.3 V, I _{OUT} = 500 mA	T _A = 85 °C ⁽⁴⁾		15		
			T _A = 105 °C ⁽⁴⁾		16		
		V _{IN} =2.5 V, I _{OUT} = 300 mA	T _A =25 °C		15		mΩ
		V _{IN} =1.8 V, I _{OUT} = 300 mA	T _A =25 °C		20		11122
		V _{IN} =1.5 V, I _{OUT} = 100 mA	T _A =25 °C		25		
R _{DSC}	Output Discharge Resistance (2)	V _{EN} < V _{IL} , I _{FORCE} = 10 mA,	GLF71431		85		Ω
	EN Inc. t Logic High Voltage	V _{IN} =1.5 V to 1.8 V		0.9			V
V _{IH}	EN Input Logic High Voltage	V _{IN} =1.8 V to 5.5 V					V
\/	EN Innut I agia I au Valtaga	V _{IN} =1.5 V to 1.8 V				0.3	V
V _{IL}	EN Input Logic Low Voltage	V _{IN} =1.8 V to 5.5 V				0.4	V
R _{EN}	EN pull down resistance	V _{EN} =5.5 V V _{EN} =V _{IN}		7	10.8	13	ΜΩ
Switching	Characteristics (2,3)						
t _{dON}	Turn-On Delay		10010		2		
t _R	V _{OUT} Rise Time	R_{OUT} =150 Ω, C_{OUT} =1.0 μF, R_{PGM} = 100 kΩ			5		
t _{dON}	Turn-On Delay	D 45000 0 40.45			7		ms
t _R	V _{OUT} Rise Time	R_{OUT} =150 Ω , C_{OUT} =1.0 μ F, R_{PGM} = 1 $M\Omega$			27		
t _{dOFF}	Turn-Off Delay (4)	D 45000 405	. OI E74400		20		
t _F	V _{OUT} Fall Time ⁽⁴⁾	R _{OUT} =150 Ω, C _{OUT} =1.0 μF, GLF71430		IC	345	EP	
t _{dOFF}	Turn-Off Delay (4)	D 4500 0 40 5 0157404			10		μs
t _F	V _{OUT} Fall Time ⁽⁴⁾	R _{OUT} =150 Ω, C _{OUT} =1.0 μF, GLF71431			110		

Notes:

- 1. I_Q does not include Enable pull down current through the pull-down resistor R_{EN.}
- 2. Output discharge path is enabled during off.
- 3. toN = tdON + tR, toFF = tdOFF + tF

 4. By design; characterized, not production tested

TIMING DIAGRAM

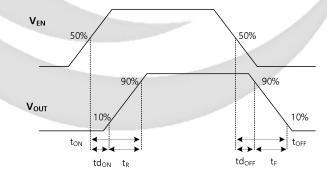
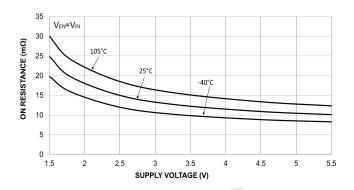



Figure 3. Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

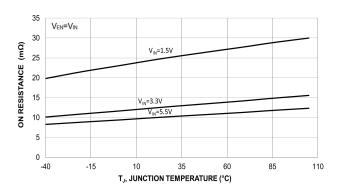


Figure 4. On-Resistance vs. Supply Voltage

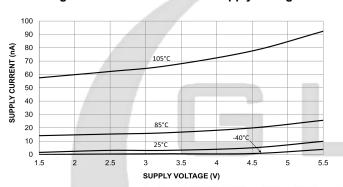


Figure 5. On-Resistance vs. Temperature

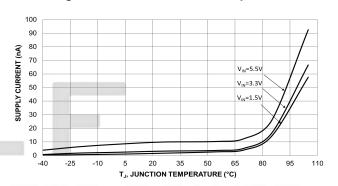


Figure 6. Quiescent Current vs. Supply Voltage

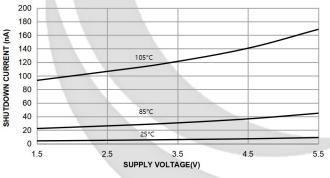


Figure 7. Quiescent Current vs. Temperature

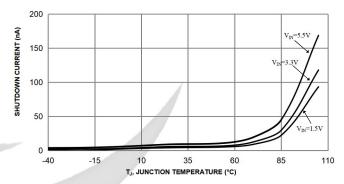


Figure 8. Shutdown Current vs. Supply Voltage, GLF71430

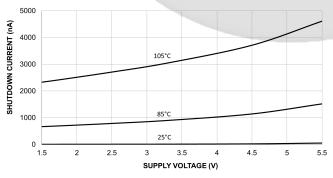


Figure 9. Shutdown Current vs. Temperature, GLF71430

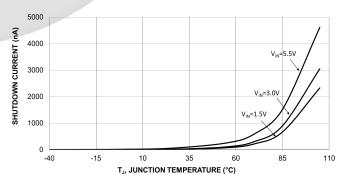
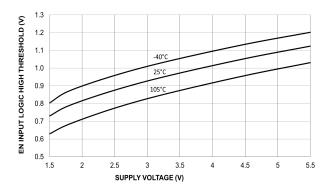



Figure 10. Shutdown Current vs. Supply Voltage, GLF71431

Figure 11. Shutdown Current vs. Temperature, GLF71431

7 A, VariRise™ Programmable Slew Rate Controlled Switch

INTEGRATED POWER

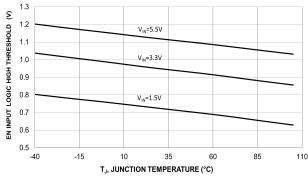
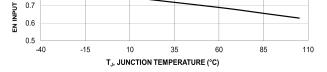



Figure 12. EN Input Logic High Threshold

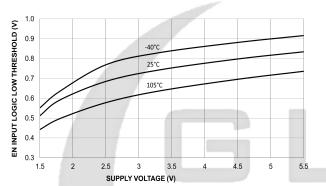


Figure 13. EN Input Logic High Threshold vs. Temperature

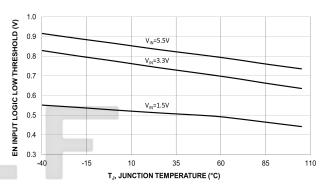
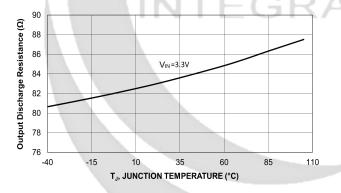



Figure 14. EN Input Logic Low Threshold

Figure 15. EN Input Logic Low Threshold vs. Temperature

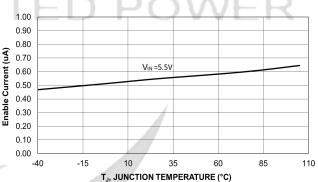


Figure 16. Output Discharge Resistance vs. Temperature

Figure 17. Enable Pulldown Current vs. Temperature

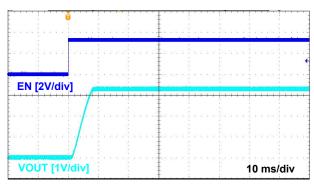


Figure 22. Turn-On Response, GLF71430 V_{IN} =3.3 $V_{.}$ C_{IN} =0.1 μ F, C_{OUT} =1.0 μ F, R_{PGM} =100 $k\Omega$, R_L =150 Ω

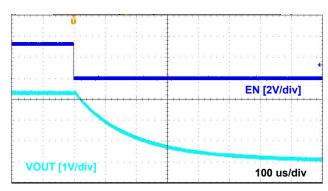


Figure 23. Turn-Off Response, GLF71430 V_{IN} =3.3 V_{IN} =0.1 μ F, C_{OUT} =1.0 μ F, R_{PGM} =100 $k\Omega$, R_L =150 Ω

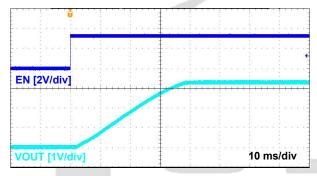


Figure 24. Turn-On Response, GLF71430 V_{IN} =3.3 V, C_{IN} =0.1 μ F, C_{OUT} =1.0 μ F, R_{PGM} =1 $M\Omega$, R_L =150 Ω

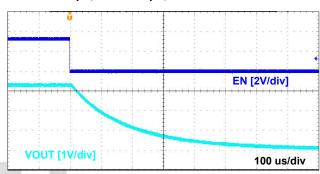


Figure 25. Turn-Off Response, GLF71430, V_{IN} =3.3 V, C_{IN} =0.1 μ F, C_{OUT} =1.0 μ F, R_{PGM} =1 $M\Omega$, R_{L} =150 Ω

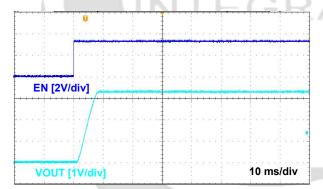


Figure 18. Turn-On Response, GLF71431 V_{IN} =3.3 V, C_{IN} =0.1 μ F, C_{OUT} =1.0 μ F, R_{PGM} =100 $k\Omega$, R_L =150 Ω

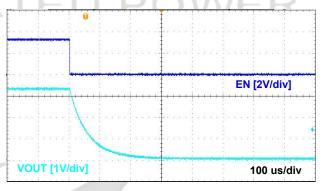


Figure 19. Turn-Off Response, GLF71431 V_{IN} =3.3 V_{iN} =0.1 μ F, C_{OUT} =1.0 μ F, R_{PGM} =100 $k\Omega$, R_L =150 Ω

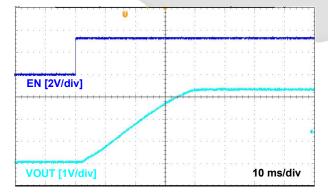


Figure 20. Turn-On Response, GLF71431 V_{IN} =3.3 V, C_{IN} =0.1 μ F, C_{OUT} =1.0 μ F, R_{PGM} =1 $M\Omega$, R_L =150 Ω

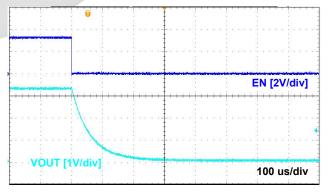


Figure 21. Turn-Off Response,GLF71431 V_{IN} =3.3 V, C_{IN} =0.1 μF , C_{OUT} =1.0 μF , R_{PGM} =1 $M\Omega$, R_L =150 Ω

INTEGRATED POWER

APPLICATION INFORMATION

The GLF71430 / GLF71431 is a 7 A fully integrated load switch with the VariRise[™] programmable slew rate control to limit the inrush current during turn on. Each device is capable of operating over a wide input range from 1.5 V to 5.5 V with very low on-resistance to reduce conduction loss. At off state, these devices consume very low leakage current to avoid unwanted standby current and save limited input power supply. The package is a 1.27 mm x 1.67 mm wafer level chip scale package, saving space in compact applications. It is constructed using 12 bumps, with a 0.4 mm pitch for manufacturability.

Input Capacitor

A capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

Output Capacitor

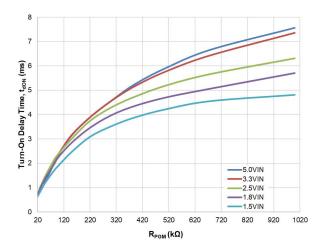
An output capacitor is recommended to mitigate voltage undershoot on the output pin the moment when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The Cout capacitor should be placed close to the VOUT and GND pins.

EN pin

The GLF71430 / GLF71431 can be activated by EN pin high. Note that the EN pin has an internal pull-down resistor to maintain a reliable status without EN signal applied from an external controller.

Output Discharge Function

When the EN signal of the GLF71431 turns into an off state, the N-channel switch turns on to discharge an output capacitor quickly.


VariRise™ Programmable Slew Rate

An external resistor between the PGM and GND pin sets the output voltage slew rate. The R_{PGM} pin is not recommended to be open. The table 1 can also be used to choose R_{PGM} value quickly.

В	5.0 V _{IN}		3.3	3 V _{IN}	2.5	2.5 V _{IN}		1.8 V _{IN}		V _{IN}
R _{PGM} [kΩ]	t _R [ms]	t _{dON} [ms]	t _R [ms]	t _{dON} [ms]						
20	1.37	0.68	1.19	0.69	0.98	0.73	0.79	0.71	0.57	0.64
33	2.13	1.10	1.90	1.06	1.56	1.09	1.22	1.04	0.89	0.91
51	3.22	1.30	2.71	1.50	2.25	1.51	1.78	1.42	1.32	1.24
82	4.91	1.98	4.20	2.11	3.44	2.12	2.64	1.95	1.95	1.70
100	5.93	2.36	5.02	2.40	4.01	2.39	3.14	2.27	2.27	1.92
150	8.36	3.15	7.09	3.17	5.77	3.01	4.47	2.85	2.97	2.47
220	11.69	3.89	10.00	3.89	7.99	3.74	6.11	3.46	4.13	3.09
300	14.88	4.56	12.69	4.56	10.21	4.29	7.53	3.97	5.34	3.52
390	18.57	5.25	15.56	5.16	12.46	4.73	9.22	4.35	6.46	3.88
510	22.45	5.92	18.95	5.78	15.20	5.19	11.35	4.71	7.71	4.22
680	27.20	6.67	22.91	6.44	18.60	5.66	13.39	5.07	8.92	4.55
1000	34.11	7.57	27.84	7.36	22.44	6.31	16.00	5.71	11.50	4.81

Note. Condition: C_{IN} =0.1 μ F, C_{OUT} =0.1 μ F, R_L =10 Ω , Rise Time from 10 % to 90 % of VOUT

Table 1. Vout Rise Time (ms) vs. RPGM

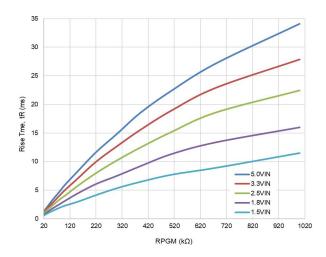
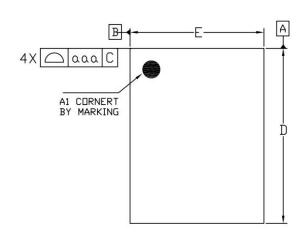
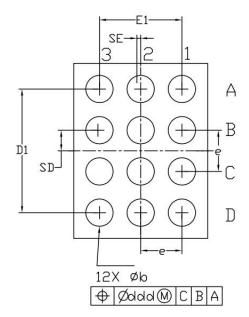
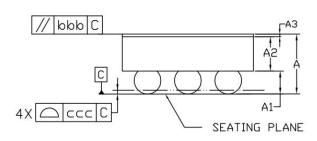


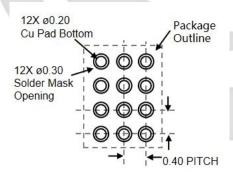
Figure 26. Turn-On Delay Time vs. RPGM


Figure 27. Vout Rise Time vs. RPGM


Board Layout


All traces should be as short as possible to minimize parasitic inductance effect. Wide traces for VIN, VOUT, and GND will be better to reduce parasitic effects at dynamic operations and improve thermal performance at high load current.

PACKAGE OUTLINE



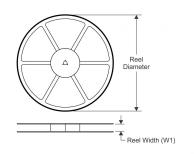
Dimensional Ref.						
REF.	Min.	Nom.	Max.			
Α	0.500	0.550	0.600			
Α1	0.175	0.200	0.225			
A2	0.300	0.325	0.350			
Α3	0.020	0.025	0.030			
D	1.655	1.670	1.685			
Е	1.255	1.270	1.285			
D1	1.150	1.200	1.250			
E1	0.750	0.800	0.850			
Ь	0.215	0.265	0.315			
е	0	.400 BS	C			
SD	0	.200 BS	C			
SE	0.000 BSC					
To	ol. of Form&Position					
ааа	0.10					
ЬЬЬ	0.10					
CCC		0.05				
	More appropri					

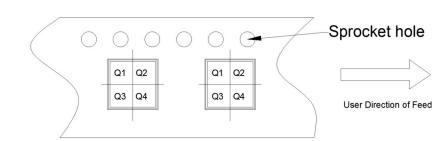
0.05

ddd

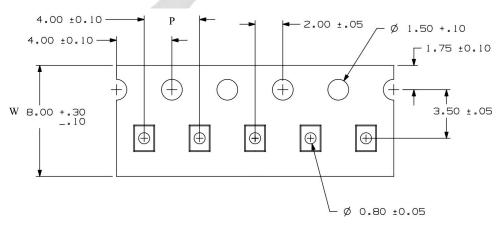
Recommended Footprint

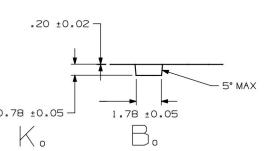
Notes


- 1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGRESS)
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 3. A3: BACKSIDE LAMINATION


7 A, VariRise™ Programmable Slew Rate Controlled Switch

TAPE AND REEL INFORMATION


REEL DIMENSIONS


QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

5° MAX	<u>↓</u>	5° MAX
1.38 ±0.05	0.78 ±0.05 J	1.78 ±0.05
A_{\circ}	K _o	₿.

Device	Package	Pins	SPQ	Reel Diameter (mm)	Reel Width W1	A0	В0	K0	Р	w	Pin1
GLF71430	WLCSP	12	3000	180	9	1.38	1.78	0.78	4	8	Q1
GLF71431	WLCSP	12	3000	180	9	1.38	1.78	0.78	4	8	Q1

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

GLF71430 / GLF71431 ☐ L F 7 A, VariRise™ Programmable Slew Rate Controlled Switch

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status		
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development		
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification		
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production		

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.