GLF4001

Ultra-Low Current Consumption Power Multiplexer Switch with Auto & Manual Input Selection in SOT23-6L

Product Specification

DESCRIPTION

The GLF4001 is an integrated power multiplexer switch with dual independent power switches connected to a single output pin to enable seamless transition between two input sources.

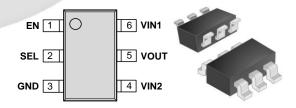
The GLF4001 provides an automatic selection mode as well as a manual selection mode by the combination of the logic input pins of EN and SEL. The EN input pin is used along with the select (SEL) input pin to select the automatic switching function, select VIN1 only, select VIN2 only, or turn both switches off. In the automatic selection mode, the GLF4001 automatically selects the higher input voltage source out of two input DC power supplies.

The GLF4001 features an ultra-efficient I_QSmart^{TM} technology that offers quiescent current (I_Q) and shutdown current (I_{SD}) in the industry. Low R_{ON} reduces conduction losses while low I_Q and I_{SD} solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

The GLF4001 blocks any cross-conduction current between two input power sources. When the switch is disabled, the GLF4001 prevents the reverse current to the input source from the output at any higher Vout than Vin condition.

FEATURES

- Two-Input and Single-Output Power Multiplexer Switch
- Automatic and Manual Input Selection Mode
- Supply Voltage Range: 1.5 V to 5.5 V
 6 Vabs Max
- Ron: 68 m Ω Typ. at 5.5 V_{IN1} or V_{IN2} 77 m Ω Typ. at 3.3 V_{IN1} or V_{IN2}
- 2 A Continuous Output Current Capability Per Channel
- Ultra-Low Supply Current at Operation
 - I_Q : 4 uA Typ at 5.5 V_{IN}
- Ultra-Low Stand-by Current
 I_{SD}: 20 nA Typ at 5.5 V_{IN}
- Smart Control Pins

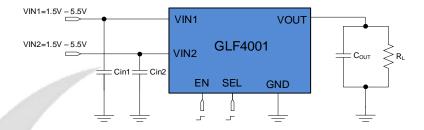

 I_{EN} and I_{SEL} : 3 nA Typ at V_{EN} or $V_{SEL} > V_{IH}$ R_{EN} and R_{SEL}: 500 k Ω Typ

- No Cross Conduction Between Two Inputs
- Reverse Current Blocking when Disabled
- Operating Temperature Range: -40 to 85 °C
- HBM: 6 kV, CDM: 2 kV

APPLICATIONS

- Smart IoT Devices
- Wearables / Portable Devices

PACKAGE



SOT23-6L

DEVICE ORDERING INFORMATION

Part Number	Top Mark	Ron at 5.5 Vin	Output Current, Iоит	Ultra-low IQ at 5.5 VIN
GLF4001-T2G7	AR	68 mΩ	2 A	4 uA

APPLICATION DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

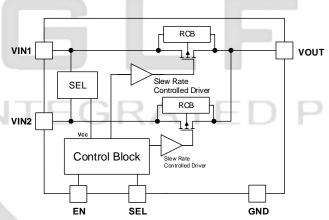


Figure 1. Functional Block Diagram

PIN CONFIGURATION

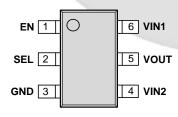


Figure 2. SOT23-6L

PIN DEFINITION

Pin #	Name	Name Description			
1	EN	Enable to control the switch. Do not leave the EN pin floating.			
2	SEL	Input Source Selection. Do not leave the SEL pin floating.			
3	GND	Ground			
4	VIN2	Switch Input 2			
5	VOUT	Switch Output			
6 VIN1		Switch Input 1			

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
VIN1, VIN2 VOUT, EN	Each Pin Voltage Range to GND	Each Pin Voltage Range to GND			٧
Іоит	Maximum Continuous Switch Current			2.0	Α
PD	Power Dissipation at T _A = 25°C			1.0	W
T _{STG}	Storage Junction Temperature			150	°C
TA	Operating Temperature Range			85	°C
θјс	Thermal Resistance, Junction to Case			90	°C/W
θја	Thermal Resistance, Junction to Ambient			180	°C/W
ESD	Flactractatic Discharge Canability	Human Body Model, JESD22-A114	6		kV
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2	KV	

Notes: 1. The thermal resistance depends on the PCB layout and heat dissipation.

RECOMMENDED OPERATING CONDITIONS

Symbol	Symbol Parameter		Max.	Unit
VIN1, VIN2	Supply Voltage	1.5	5.5	V
TA	Ambient Operating Temperature	-40	+85	°C

ELECTRICAL CHARACTERISTICS

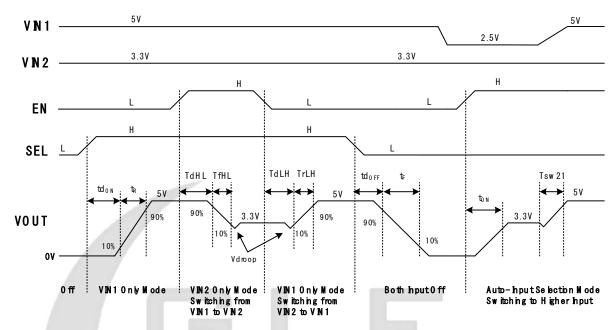
 $V_{IN1} = V_{IN2} = 1.5V$ to 5.5V and $T_A = 25$ °C. Unless otherwise noted

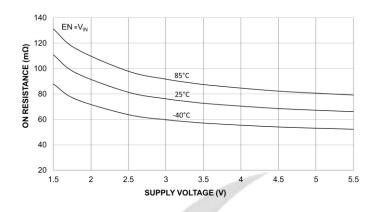
Symbol	nbol Parameter Condition			Min.	Тур.	Max.	Units
Basic Opera	ation			•			
l _{Q1} , l _{Q2}	Quiescent Current	$V_{IN1} = 5.5 \text{ V}, \ V_{IN2} < V_{in1}, \ I_{OUT} = 0 \text{ mA}, \\ EN = 0 \text{ V}, \ SEL = V_{IN1}, \ V_{OUT} = V_{IN1} \\ \text{or} \\ V_{IN2} = 5.5 \text{ V}, \ V_{IN1} < V_{IN2}, \ I_{OUT} = 0 \text{ mA}, \\ EN = SEL = V_{IN2}, \qquad V_{OUT} = V_{IN2}$			4	6	μА
		As above, Ta = 85°C (1)			4.7		
		V _{IN1,2} = 5.5 V, V _{OUT} = GND, EN = S	EL = 0 V		20	40	
I _{SD1} , I _{SD2}	Shutdown Current	$V_{IN1,2} = 5.5 \text{ V}, V_{OUT} = GND, EN = S$ Ta=85 °C ⁽¹⁾	SEL = 0 V,		680		nA
		V V 55VI 500 A	Ta = 25 °C		68		
		V_{IN1} or $V_{IN2} = 5.5$ V $I_{OUT} = 500$ mA	Ta = 85 °C (1)		80		
			Ta = 25 °C		70		- - mΩ
_	On-Resistance	V_{IN1} or $V_{IN2} = 4.5 \text{ V}$, $I_{OUT} = 500 \text{ mA}$	Ta = 85 °C (1)		83		
Ron		V _{IN1} or V _{IN2} = 3.3 V, I _{OUT} = 500 mA	Ta = 25 °C		77		
			Ta = 85 °C (1)		90		
		V _{IN1} or V _{IN2} = 2.5 V, I _{OUT} = 300 mA	Ta = 25 °C		85		
		V _{IN1} or V _{IN2} = 1.5 V, I _{OUT} = 100 mA	Ta = 25 °C		114		
VIH	EN, SEL Input Logic High Voltage		1	1.2			V
VIL	EN, SEL Input Logic Low Voltage	GRAIL	PO	\mathcal{N}	JΕ	0.4	V
IEN, ISEL	EN, SEL Current	V _{EN} or V _{SEL} > V _{IH} , Enabled		-	3	20	nA
R _{EN} , R _{SEL}	EN, SEL Pulldown Resistance	V _{EN} or V _{SEL} < V _{IL} , Disabled			500		kΩ
I _{RVS}	Reverse Current (1)	V _{IN1} = V _{IN2} = 0 V, V _{OUT} = 5.5 V, EN = \$	SEL=0 V		2.6		uA
Switching Cl	haracteristics ⁽²⁾						
t _{dON}	Turn-On Delay				200		μs
t _R	VOUT Rise Time				350		μs
TdHL	High-low Delay (1)				3		μs
TfHL	High-low Fall Time (1)	Var. FOV Var. 2	21/		6		μs
Vdroop	Voltage Droop (1)	$V_{IN1} = 5.0 \text{ V}, V_{IN2} = 3.$ $R_L=150\Omega, C_{OUT}=1.0$			80		mV
TdLH	Low-high Delay (1)	112-10012, 0001-1.0			7		μs
TrLH	Low-high Rise Time (1)				4		μs
tdoff	Turn-Off Delay (1)				15		μs
tғ	VOUT Fall Time (1)				350		μs

Notes:

- 1. By design; characterized, not production tested.
- 2. $t_{ON} = t_{dON} + t_R$, $t_{OFF} = t_{dOFF} + t_F$

TIMING DIAGRAM and TRUTH TABLE




Figure 3. Timing Diagram

SEL	EN Function		VOUT	
0	0	Both switches are off	High-Z	
0	1	Auto-Input selection. Vout is connected to a higher input source automatically	Higher Innuit between VINI1 and VINI2	
1	0	Only VIN1 is selected	VIN1	
1	1	Only VIN2 is selected	VIN2	

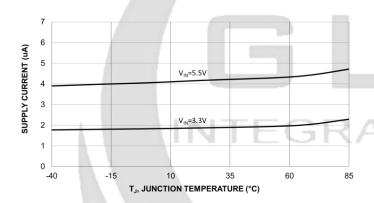
Table 1. Truth Table of Input Source Selection

TYPICAL PERFORMANCE CHARACTERISTICS

140 EN = V_{IN}

120 V_N=1.5V

100 V_N=3.3V


60 V_N=5.5V

40 -15 10 35 60 88

T_J, JUNCTION TEMPERATURE (°C)

Figure 4. On-Resistance vs. Supply Voltage

Figure 5. On-Resistance vs. Temperature

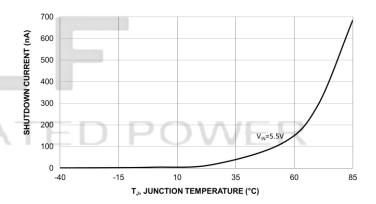
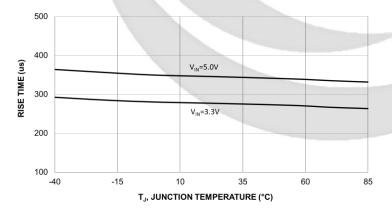



Figure 6. Quiescent Current vs. Temperature

Figure 7. Shutdown Current vs. Temperature

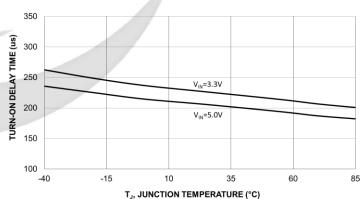


Figure 8. Vout Rise Time vs. Temperature

Figure 9. Turn-On Delay Time vs. Temperature

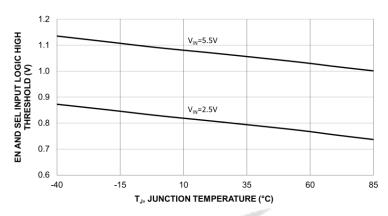


Figure 10. EN and SEL Input Logic High Threshold Vs.

Temperature

Figure 11. EN and SEL Input Logic Low Threshold Vs.
Temperature



Figure 12. EN and SEL Current vs. Temperature

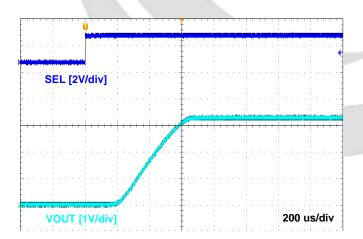


Fig Figure 13. Turn-On Response $\label{eq:Vinter} V_{\text{IN1}=3.3} \text{ V, C}_{\text{IN}=0.1} \text{ uF, C}_{\text{OUT}=1.0} \text{ uF, R}_{\text{L}=150} \ \Omega$

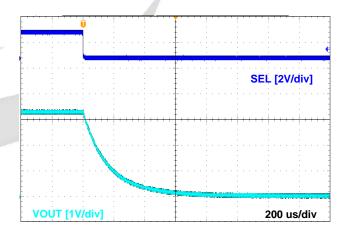


Figure 14. Turn-Off Response $V_{\text{IN1}}\text{=}3.3~V,~C_{\text{IN}}\text{=}0.1~\text{uF},~C_{\text{OUT}}\text{=}1.0~\text{uF},~R_{\text{L}}\text{=}150~\Omega$

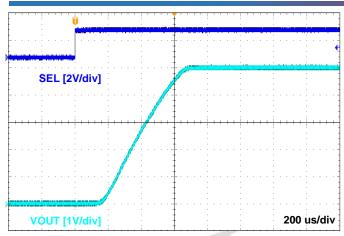


Fig Figure 15. Turn-On Response $\label{eq:Vin1} V_{\text{IN1}}\text{=-}5.0 \text{ V, C}_{\text{IN}}\text{=-}0.1 \text{ uF, C}_{\text{OUT}}\text{=-}1.0 \text{ uF, R}_{\text{L}}\text{=-}150 \text{ }\Omega$

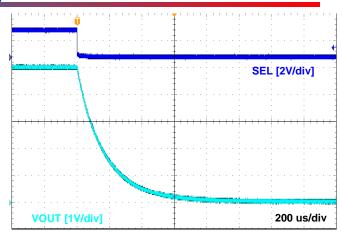


Figure 16. Turn-Off Response V_{IN1} =5.0 V, C_{IN} =0.1 uF, C_{OUT} =1.0 uF, R_{L} =150 Ω

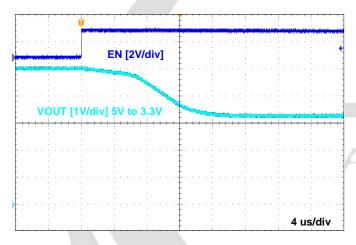


Figure 17. Vout Switchover from 5V to 3.3V Vin1=5.0 V, Vin2=3.3 V Cin=1.0 uF, Cout=1.0 uF, RL=150 Ω

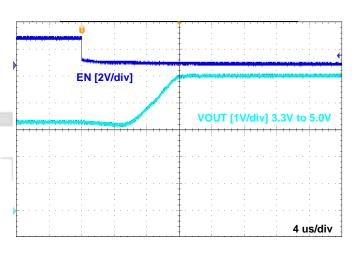


Figure 18. Vout Switchover from 3.3V to 5V $$V_{IN1}$=5.0$ V, $$V_{IN2}$=3.3$ V $$C_{IN}$=1.0$ uF, $$C_{OUT}$=1.0$ uF, $$R_{L}$=150$ Ω

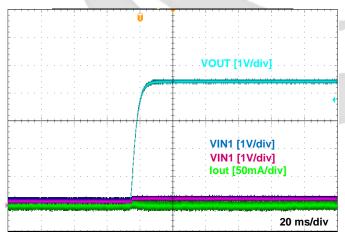
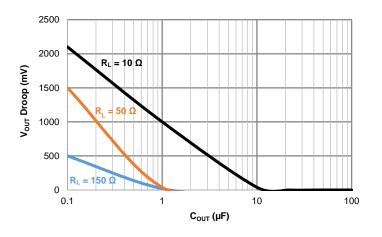



Figure 19. Reverse Current Blocking When Disabled $V_{IN1} = V_{IN2} = 0$ V, $V_{OUT} = 0$ V to 4.5 V, $C_{IN} = 1.0$ uF, $C_{OUT} = 1.0$ uF, EN = SEL = 0 V

2500 $R_L = 10 \Omega$ $R_L = 150 \Omega$

Figure 20. Output Voltage Droop at Switching Over From V_{IN1} (5V) to V_{IN2} (3V)

Figure 21. Output Voltage Droop at Switching Over From V_{IN2} (3V) to V_{IN1} (5V)

APPLICATION INFORMATION

The GLF4001 is a fully integrated 2 A Power Mux with a fixed slew rate control to limit the inrush current during device turn on. The GLF4001 also has a wide voltage operating range from 1.5 V to 5.5 V. In the off state, the GLF4001 consumes very low leakage current to avoid unwanted power drain from limited input power supplies.

Input Source Selection

By changing the state of the SEL and EN pins, the GLF4001 offers the automatic, as well as the manual input selection mode. In each mode, the VOUT connects to one input source.

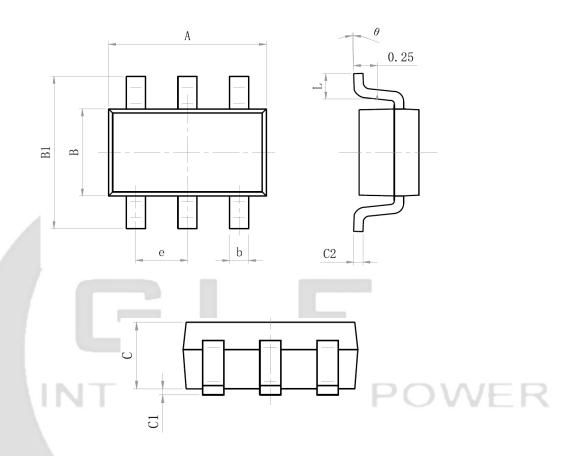
Input Capacitor

A capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

Output Capacitor

An output capacitor is recommended to minimize voltage undershoot on the output pin during the transition when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be placed close to the VOUT and GND pins.

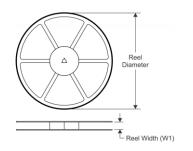
Reverse Current Blocking

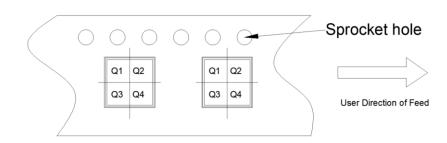

The GLF4001 also prevents the reverse current from the output voltage when both switches are turned off at EN = SEL = 0 V.

Board Layout

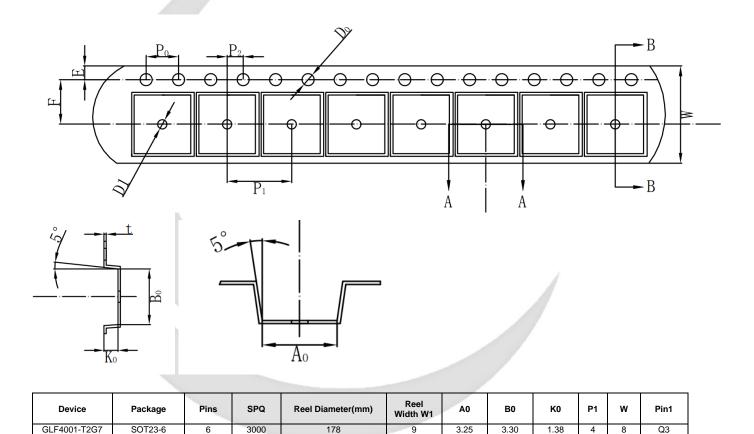
All traces should be as short as possible to minimize parasitic inductance effect. Wide traces for VIN, VOUT, and GND will help reduce signal degradation and parasitic effects during dynamic operations as well as improve the thermal performance at high load current.

PACKAGE OUTLINE


	Size Mark	Min(mm)	Max(mm)	Size Mark	Min(mm)	Max(mm)
h	A	2.82	3.02	С	1.05	1. 15
	е	0.9	95 (BSC)	C1	0.03	0. 15
	b	0. 28	0.45	C2	0.12	0. 23
	В	1.50	1.70	L	0.35	0.55
٧	B1	2.60	3.00	θ	0°	8°



TAPE AND REEL INFORMATION


REEL DIMENSIONS

QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification		
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, misuse, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.