

GLF76311 Nano-Current Consumed Power On/Off Control IC

Preliminary Specification

DESCRIPTION

The GLF76311 is an ultra-thin, ultra-efficient I_QSmart^{TM} load switch with an integrated on and off delay timer for Smart bracelet and Mobile handheld devices.

When the VBAT pin is connected to the battery, the main switch of GLF76311 is turned on, that is the default state. During the normal operation mode, pulling the SW pin to a low level for 6 seconds turns off the GLF76311 and the entire system enters the ultra-deep sleep energy-saving mode.

When the GLF76311 is off, pulling the SW pin to a low level for 3 seconds activates the GLF76311 again and the entire system enters the normal working mode.

The GLF76311 helps to reduce power consumption with the best in class R_{ON} , a breakthrough on state I_Q of only 6 nA when the switch is on and ultra-low I_{SD} of only 7 nA when switch is off. This switch can help significantly extend the system battery life in mobile devices during shipping or in extended shutdown times.

An integrated 1 ms slew rate control can also enhance system reliability by mitigating bus voltage swings during switching events, where uncontrolled switching can generate high inrush currents that result in voltage droop and/or bus reset events. The GLF slew rate control specifically limits inrush currents during turn-on to minimize voltage droop. The output discharge function makes the output voltage shut off safely.

The GLF76311 is available in 0.97 mm x 0.97 mm x 0.55 mm wafer level chip scale package (WLCSP).

FEATURES

- Ultra-Low Isp: 7 nA Typ @ 3.6 VBAT
- Ultra-Low I_Q: 6 nA Typ @ 3.6 VBAT
- Low Ron : 34 mΩ Typ @ 3.6 VBAT
- I_{OUT} Max : 2 A
- Wide Input Range: 2.5 V to 5.5 V 6 Vabs Max.
- Turn-On Delay Time, 3 s Typ.
- Turn-Off Delay Time, 6 s Typ.
- Controlled Vout Rise Time: 1 ms at 3.6 VBAT
- Integrated Output Discharge Switch When Disabled
- Operating Temperature Range: 40 to 85 °C
- HBM: 8 kV, CDM: 2 kV
- Ultra-Small: 0.97 mm x 0.97 mm x 0.55 mm WLCSP

APPLICATIONS

- Smart Devcies
- Mobile handheld device

DEVICE INFORMATION

Part Number	Top Mark	Turn On Turn Off Vout Discharge Delay Time Delay Time Switch at Off		Vout Discharge Switch at Off	Tape and Reel Packaging
GLF76311	СТ	3 sec	6 sec	85 Ω	3000 Pieces on 7 inch reel

APPLICATION DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

				Pin #	Name	Description
VOUT	VBAT	VBAT	VOUT	A1	VOUT	Switch Output.
	(A2)			A2	VBAT	Switch Input. VBAT pin is connected to the positive input of an external battery.
GND	ŚW	SW	GND	B1	GND	Ground
(B1) TOP	(B2) VIEW	B2 BOTTO	M VIEW	B2	SW	Switch on and off control pin. Pulling the SW pin to a low level for 6 seconds, the GLF76311 is turned off. Pulling the SW pin to a low level for 3 seconds turns on the GLF76311

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Pa	Min.	Max.	Unit	
VBAT, VOUT, SW	Each Pin Voltage Range to GND	-0.3	6	V	
I _{OUT}	Maximum Continuous Switch Curre		2	А	
PD	Power Dissipation at $T_A = 25 \text{ °C}$		1.2	W	
T _{STG}	Storage Junction Temperature	-65	150	°C	
TA	Operating Temperature Range	-40	85	°C	
θја	Thermal Resistance, Junction to Ar		85	°C/W	
L CO	Electrostatic Discharge Conshility	Human Body Model, JESD22-A114	8		
ESD	Lieurostalic Discharge Capability	2		κv	

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
VBAT, VOUT, SW	Supply Input and Output Voltage	2.5	5.5	V
T _A	Ambient Operating Temperature	-40	+85	°C

ELECTRICAL CHARACTERISTICS

Values are at VBAT = 3.6 V and T_A = 25 °C unless otherwise noted.

Symbol	Parameter	Conditions			Тур.	Max.	Units
Basic Ope	ration	·					
lq	Quiescent Current	VBAT=3.6 V, I _{OUT} = 0 mA, Switch = On			6		
		VBAT=3.6 V, VOUT=GND, S	Switch = Off		7		nA
ISD	Shut Down Current	VBAT=4.2 V, VOUT=GND, S	Switch = Off		10		
		VPAT-55V lour-500 mA	Ta=25 °C		28		
		VBAT=5.5 V, 1001=500 IIIA	Ta=85 °C (1)		33		
			Ta=25 °C		31		mΩ
R _{ON}	On-Resistance	VBAT=4.2 V, Iout= 500 mA	Ta=85 °C (1)		37		
		VBAT=3.6 V, Iout= 500 mA	Ta=25 °C		34		
			Ta=85 °C (1)		40		
		VBAT=3.0 V, Iout= 300 mA	Ta=25 °C		37		
RDSC	Output Discharge Resistance	VOUT = Off, IFORCE= 10 mA			85		Ω
VIH	SW Pin Logic High Voltage			1.2			- V
VIL	SW Pin Logic Low Voltage	VBAT=2.5 V - 5.5 V				0.3	
ON and OF	F delay time						
t _{ON-Dly}	Turn-On Delay Time ⁽¹⁾				3		
	Svv Pin Hold Time						s
toff-Dly	SW Pin Hold Time	VBAT=3.6 V, R_L = 150 Ω , C_L = 0.1 uF			6		
t _R	VOUT Rise Time				1		ms
tF	VOUT Fall Time (1)				25		us
Notes: 1	By design: characterized, not pro	duction tested.					

TIMING DIAGRAMS AND INPUT CONDITION

Figure 4. Power-On by SW Pin

Figure 5. Power-Off by SW Pin

90%

 $t_{\text{OFF-Dly}}$

Level triggered

10%

Table 1. VOUT Sates by Input Conditions

Function	VBAT	SW	Delay Time (Hold time)	VOUT Action
Default State	Initially VBAT applied	x	NA	VOUT=VBAT
Power-Off into Deep Sleep	VBAT applied	Hold Low for 6 s	toff-Dly= 6 s	VBAT to GND
Power-On	VBAT applied	Hold Low for 3 s	ton-dly = 3 s	GND to VBAT

Note) 1. X = Don't Care

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 11. Shut Down current vs. Temperature

Figure 12. Turn-On Delay time

SW [2V/div]		
Vout [2V/dív]		
< t _{OFF_Dly} =5.6s	>	
	lout [50mA/div]	1 s/div

Figure 13. Turn-Off Delay time

APPLICATION INFORMATION

The GLF76311 is an integrated load switch with the switch on and off delay mode which is optimized to significantly extend the battery life in smart IoT devices and handheld mobile devices during long period of shipping or off mode. Typical applications are shown in Fig.1 and Fig. 2.

D

Power-On

- When the VBAT pin is connected to the battery, the main switch of GLF76311 is turned on. That is the default state.
- When the main switch of GLF76311 is turned off and the system is disabled, press the button and hold the SW pin low for the hold time, ton-Dly = 3 seconds, to turn on the main switch to wake up the downstream system.

Figure 14. Power-On by SW Pin

Figure 15. Power-Off by SW Pin

Power Off

When the main switch of GLF76311 is turned on, press the button and hold the SW pin low for the hold time, $t_{OFF-Dly} = 6$ seconds, to turn off the main switch. This will allow the device to enter the deep sleep mode by disconnecting the downstream system from the battery and consume only 7 nA in standby current.

Output Discharge Function

The GLF76311 has an internal discharge switch on VOUT. It is activated to discharge an output capacitor quickly when the main switch is turned off. During the off mode, the discharge switch remains in the on state holding the VOUT to GND. When the main switch is enabled, the output discharge switch is turned off.

Input Capacitor

A 0.1uF capacitor is recommended to be placed close to the VBAT pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

Output Capacitor

A 0.1uF output capacitor is recommended to mitigate voltage undershoot on the output pin when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be placed close to the VOUT and GND pins.

iRA

PACKAGE OUTLINE

-F 1

ddd

0.05

- 1. AU DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

TAPE AND REEL INFORMATION

Device	Package	Pins	SPQ	Reel Diameter(mm)	Reel Width W1	A0	В0	КО	Ρ	w	Pin1
GLF76311	WLCSP	4	3000	180	9	1.07	1.07	0.68	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production or producability of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production or producability of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.