

GLF1110Q, GLF1111Q Nano-Current Power IoSmart™ Load Switch

Product Specification

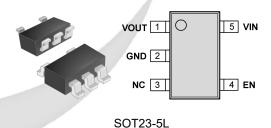
DESCRIPTION

The GLF1110Q / GLF1111Q is an ultra-efficiency, 2 A rated, load switch with integrated slew rate control. The best-in-class efficiency makes it an ideal choice for electronics requiring operation under the high temperature up to 125 °C.

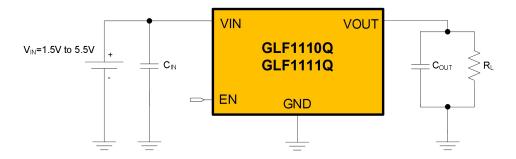
The GLF1110Q / GLF1111Q features ultra-efficient I_QSmart^{TM} technology that supports the lowest quiescent current (I_Q) and shutdown current (I_{SD}) in the industry. Low I_Q and I_{SD} solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

The integrated slew rate control can also enhance system reliability by mitigating bus voltage swings during switching events. Where uncontrolled switches can generate high inrush currents that result in voltage droop and/or bus reset events, the GLF slew rate control specifically limits inrush currents during turn-on to minimize voltage droop.

The GLF1110Q / GLF1111Q supports an industry leading wide input voltage range and helps to improve operating life and system robustness.


FEATURES

- AEC-Q100 Qualified
- Qualified for Automotive Applications:
 Temperature Grade 1: Ambient Operating
 Temperature Range: -40 °C to +125 °C
- Wide Input Range: 1.5 V to 5.5 V
 6 V abs max
- R_{ON} : 60 m Ω Typ at 5.5 V_{IN}
- Iout Max: 2 A
- Ultra-Low I_Q: 2 nA Typ at 5.5 V_{IN}
- Ultra-Low I_{SD}: 13 nA Typ at 5.5 V_{IN}
- Controlled Rise Time: 600 µs at 3.3 V_{IN}
- Internal EN Pull-Down Resistor
- Integrated Output Discharge Switch: GLF1111Q
- ESD Performance Tested per AEC Q100
 HBM: 4 kV, CDM: 2 kV
- Moisture Sensitivity Level: MSL-3 and 260°C Peak Reflow Temperature
- Lead-free, Halogen-free, and adhere to RoHS Directive


APPLICATIONS

- Automotive Electronics
- Automotive Infotainment Systems
- Automotive Diagnosis System

PACKAGE

APPLICATION DIAGRAM

ALTERNATE DEVICE OPTIONS

Part Number	Top Mark	R _{ON} (Typ) at 5.5 V	Output Discharge	EN Activity
GLF1110Q-T1G7	DKQ	60 mΩ	NA	High
GLF1111Q-T1G7	DLQ	DLQ 60 mΩ 85 Ω		High

FUNCTIONAL BLOCK DIAGRAM

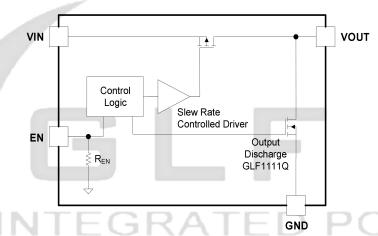


Figure 1. Functional Block Diagram

PIN CONFIGURATION

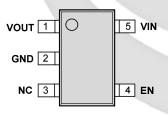


Figure 2. SOT23-5L

PIN DEFINITION

Pin#	Name	Description
1	VOUT	Switch Output
2	GND	Ground
3	NC	No connection
4	EN	Enable to control the switch
5	VIN	Switch Input. Supply Voltage for IC

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Min.	Max.	Unit	
V _{IN}	V _{IN} , V _{OUT} , V _{EN} to GND	-0.3	6	V	
l _{OUT}	Maximum Continuous Switch Current			2	Α
T _{STG}	Storage Junction Temperature	-65	150	°C	
TJ	Maximum Junction Temperature		150	°C	
θ _{JC}	Thermal Resistance, Junction to Case			90	°C/W
θ_{JA}	Thermal Resistance, Junction to Ambient (1)			180	°C/W
ESD	Flactractatic Discharge Canability	Human Body Model, per AEC Q100-002	4		kV
	Electrostatic Discharge Capability	Charged Device Model, per AEC Q100-011	2		V

Note. The θ_{JA} is measured at T_A = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	Supply Voltage	1.5	5.5	V
T _A	Ambient Operating Temperature	-40	+125	°C

ELECTRICAL CHARACTERISTICS

Values are at T_A = 25 °C unless otherwise noted.

Symbol	Parameter	Condition	ons	Min.	Тур.	Max.	Units
Basic Ope	eration				•		
	Quiescent Current (1)	V _{IN} = V _{EN} = 5.5 V, I _{OUT} = 0 m	ıA		2	20	
ΙQ	Quiescent Current (1)	V _{IN} = V _{EN} = 5.5 V, I _{OUT} = 0 r	nA, T _A = 125 °C ⁽⁴⁾		75		
		V _{EN} = 0 V, V _{IN} = 1.5 V, I _{OUT} =	= 0 mA		2	20	nA
		$V_{EN} = 0 \text{ V}, V_{IN} = 3.3 \text{ V}, I_{OUT} = 0.00 \text{ V}$	= 0 mA		3] IIA
Isp	Shut Down Current	$V_{EN} = 0 \text{ V}, V_{IN} = 4.2 \text{ V}, I_{OUT} = 4.2 \text{ V}$	= 0 mA		5		
ISD	Shut Down Current	$V_{EN} = 0 \text{ V}, V_{IN} = 5.5 \text{ V}, I_{OUT} = 0.00 \text{ V}$	= 0 mA		13	30	
		V_{EN} = 0 V, V_{IN} = 5.5 V, I_{OUT} = 0 mA, T_A = 85 °C $^{(4)}$			0.3	0.4	μA
		V _{EN} = 0 V, V _{IN} = 5.5 V, I _{OUT} = 0 mA, T _A = 125 °C			3	4	μΑ
	On-Resistance	V _{IN} = 5.5 V, I _{OUT} = 500 mA	T _A = 25 °C		60	68	mΩ
			T _A = 125 °C		78		
		V _{IN} = 3.3 V, I _{OUT} = 500 mA	T _A = 25 °C		70	79	
Ron			T _A = 125 °C		92		
TON		V = 1 9 V I = 500 m A	T _A = 25 °C		110	124	11152
		$V_{IN} = 1.8 \text{ V}, I_{OUT} = 500 \text{ mA}$	T _A = 125 °C		150		
		V = 1.5 V L = 100 mA	T _A = 25 °C		120	135	
		V _{IN} = 1.5 V, I _{OUT} = 100 mA	T _A = 125 °C		166		
В	Output Discharge Resistance,	V _{EN} = Low , I _{FORCE} = 10 mA			85		Ω
R _{DSC}	GLF1111Q	V _{EN} = Low, I _{FORCE} = 10 mA,		90] \(\frac{1}{2} \)	

GLF1110Q, GLF1111Q Nano-Current Power I_QSmart[™] Load Switch

	EN logget Logge High Voltoge	V _{IN} = 1.5 V to 1.8 V, T _A = -40 °C to +125 °C ⁽⁴⁾	0.9			
VIH	EN Input Logic High Voltage	V_{IN} = 1.8 V to 5.5 V, T_A = -40 °C to +125 °C ⁽⁴⁾				V
	EN Import Louis Louv Voltage	V _{IN} = 1.5 V to 1.8 V, T _A = -40 °C to +125 °C ⁽⁴⁾			0.3] V
V_{IL}	EN Input Logic Low Voltage	V _{IN} = 1.8 V to 5.5 V, T _A = -40 °C to +125 °C ⁽⁴⁾			0.4	
R _{EN}	EN pull down resistance	Internal Resistance		10		МΩ
I _{EN}	EN Current	V _{EN} = 5.5 V		0.5		μA
Switchin	g Characteristics ^{(2), (3)}					
t_{dON}	Turn-On Delay			450		
t _R	V _{OUT} Rise Time			600		
t _{dOFF}	Turn-Off Delay (4)	$_{\text{NN}}$ = 3.3 V, R _L = 150 Ω, C _{OUT} = 0.1 μF $_{\text{OLF}}$ GLF1111Q		17		
	V _{OUT} Fall Time ⁽⁴⁾ , GLF1110Q	GLITTIQ		32		
t _F	V _{OUT} Fall Time ⁽⁴⁾ , GLF1111Q			12] <u>.</u>
t _{dON}	Turn-On Delay			220		μs
t _R	V _{OUT} Rise Time			400		
t _{dOFF}	Turn-Off Delay (4)	$V_{\text{IN}} = 5.0 \text{ V}, \text{ R}_{\text{L}} = 150 \Omega, \text{ C}_{\text{OUT}} = 0.1 \mu\text{F}$ $= \text{GLF1111Q}$		17		
	V _{OUT} Fall Time ⁽⁴⁾ , GLF1110Q	OLI IIIIQ		32		
t _F	V _{OUT} Fall Time ⁽⁴⁾ , GLF1111Q			12		

Notes:

- 1. Io does not include the enable pull down current (I_{EN}) through the pull-down resistor R_{EN}.
- ton = t_{dON} + t_R, to_{FF} = t_{dOFF} + t_F
 Output discharge path is enabled during off.
 By design; characterized, not production tested

TIMING DIAGRAM

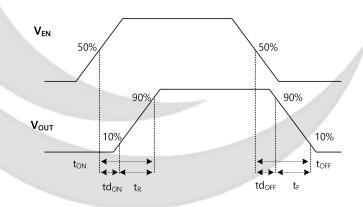


Figure 3. Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

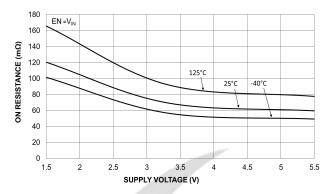


Figure 4. On-Resistance vs. Supply Voltage

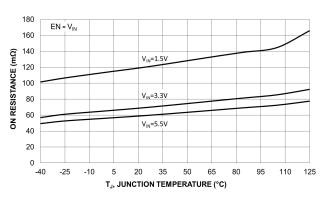


Figure 5. On-Resistance vs. Temperature

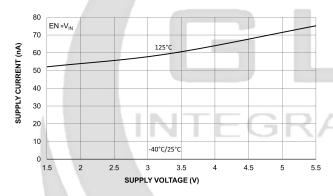


Figure 6. Quiescent Current vs. Supply Voltage

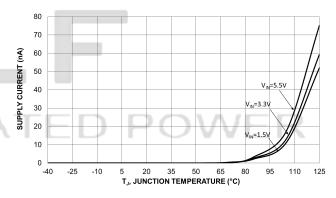


Figure 7. Quiescent Current vs. Temperature

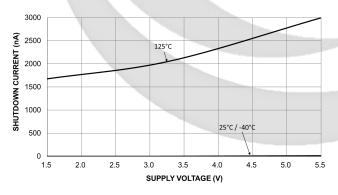


Figure 8. Shutdown Current vs. Input Voltage

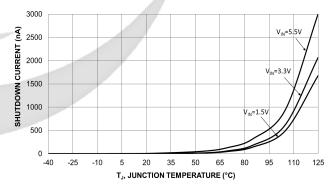
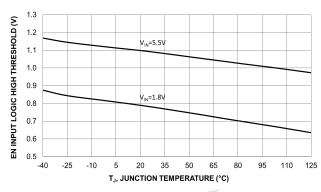



Figure 9. Shutdown Current vs. Temperature

Nano-Current Power IoSmart™ Load Switch

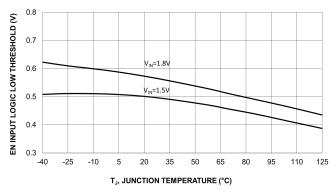


Figure 10. EN Input Logic High Threshold Vs. Temperature

Figure 11. EN Input Logic Low Threshold Vs. Temperature

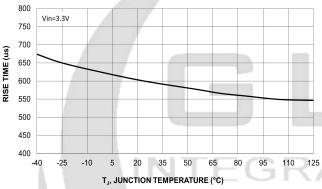


Figure 12. V_{OUT} Rise Time vs. Temperature

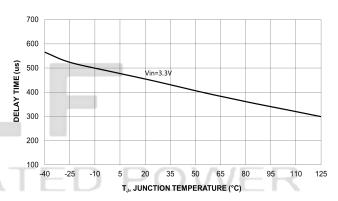


Figure 13. Turn-On Delay Time vs. Temperature

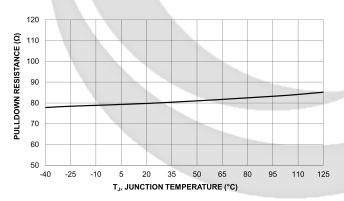


Figure 14. V_{OUT} Discharge Resistance vs. Temperature GLF1111Q Only

Nano-Current Power IoSmart™ Load Switch

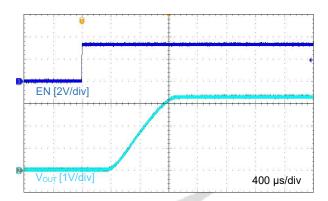


Figure 15. Turn-On Response, GLF1110Q V_{IN} =3.3 V, C_{IN} = C_{OUT} =0.1 μ F, R_L =150 Ω

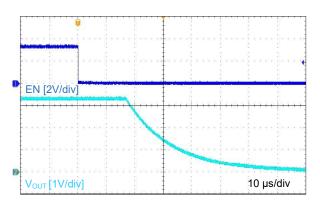


Figure 16. Turn-Off Response, GLF1110Q V_{IN} =3.3 V, C_{IN} = C_{OUT} =0.1 μ F, R_L =150 Ω

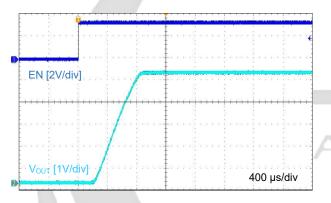


Figure 17. Turn-On Response, GLF1110Q V_{IN} =5.0 V, C_{IN} =Cout=0.1 μ F, R_L =150 Ω

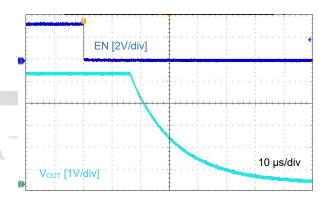


Figure 18. Turn-Off Response, GLF1110Q V_{IN}=5.0 V, C_{IN}=C_{OUT}=0.1μF, R_L=150 Ω

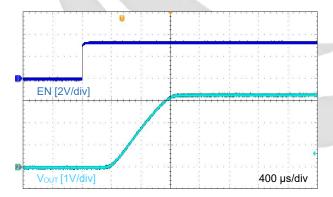


Figure 19. Turn-On Response, GLF1111Q $V_{\text{IN}}{=}3.3~\text{V},~C_{\text{IN}}{=}C_{\text{OUT}}{=}0.1~\mu\text{F},~R_{\text{L}}{=}150~\Omega$

Figure 20. Turn-Off Response, GLF1111Q $V_{\text{IN}}{=}3.3$ V, $C_{\text{IN}}{=}C_{\text{OUT}}{=}0.1~\mu\text{F},~R_{\text{L}}{=}150~\Omega$

Nano-Current Power IoSmart™ Load Switch

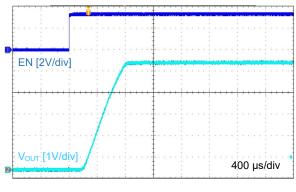


Figure 21. Turn-On Response, GLF1111Q V_{IN}=5.0 V, C_{IN}=C_{OUT}=0.1 μF, R_L=150 Ω

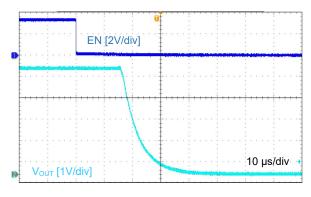
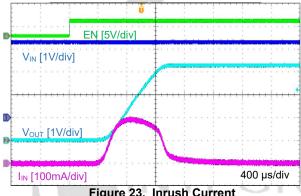
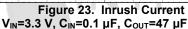




Figure 22. Turn-Off Response, GLF1111Q $V_{IN}=5.0 \text{ V}, C_{IN}=C_{OUT}=0.1 \mu\text{F}, R_L=150 \Omega$

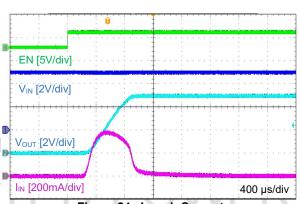


Figure 24. Inrush Current V_{IN}=5.0 V, C_{IN}=0.1 μF, C_{OUT}=47 μF

APPLICATION INFORMATION

The GLF1110Q / GLF1111Q is an integrated 2 A, Ultra-Efficient I_QSmart[™] Load Switch devices with a fixed slew rate control to limit the inrush current during turn on. It is capable of operating over a wide input range from 1.5 V to 5.5 V with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current to lengthen the lifespan of a battery.

Input Capacitor

The GLF1110Q / GLF1111Q does not require an input capacitor. However, to reduce the voltage drop on the input power rail caused by transient inrush current at start-up, a 0.1 µF capacitor is recommended to be placed close to the V_{IN} pin. A higher input capacitor value can be used to further attenuate the input voltage drop.

Output Capacitor

The GLF1110Q / GLF1111Q does not require an output capacitor. However, use of an output capacitor is recommended to mitigate voltage undershoot on the output pin when the switch is turning off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The Cout capacitor should be spaced close to the VOUT and GND pins.

EN pin

The GLF1110Q / GLF1111Q can be activated by forcing EN pin high level. Note that the EN pin has an internal pull-down resistor to help pull the main switch to a known "off state" when no EN signal is applied from an external controller.

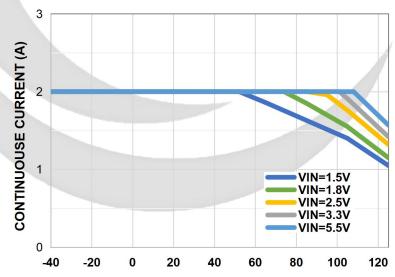
Output Discharge Function

The GLF1111Q has an internal discharge N-channel FET switch on the VOUT pin. When EN signal turns the main power FET to an off state, the N-channel switch turns on to discharge an output capacitor quickly.

Thermal Consideration

The maximum power dissipation, P_{D(MAX)}, dependent upon specific temperature conditions such as ambient temperature, a silicon junction temperature, printed circuit board conditions, and a thermal resistance of an IC. It can be calculated by the following equation The maximum junction temperature of the GLF1111Q is not allowed to exceed the maximum rating, 150°C to insure normal functionality.

The continuous output current given in Figure 25 shows current capability at the ambient temperature, T_A . It is limited by the maximum junction temperature, the thermal resistance, and the rise of the R_{ON} at the ambient temperature condition.


$$\begin{split} P_{D(max)} &= \frac{T_{J(max)} - T_{A}}{\theta_{JA}} \\ I_{D(DC)} &= \sqrt{\frac{T_{J(max)} - T_{A}}{R_{DS} \cdot \theta_{JA}}} \end{split}$$

Where

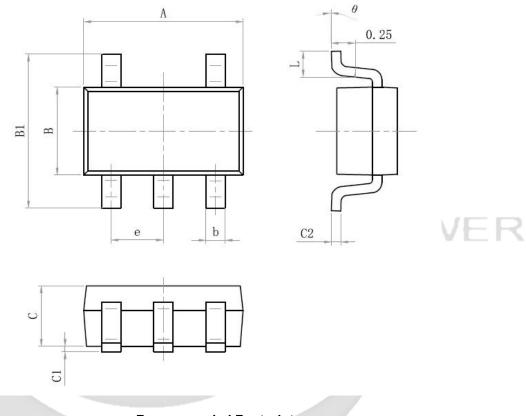
 $T_{J(max)}$: Maximum junction temperature

T_A: Ambient temperature

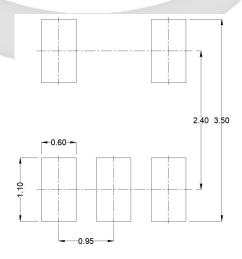
 θ_{IA} : Thermal resistance between junction and ambient

Note. This graph is based on a high effective thermal conductivity four-layer test board per JEDEC 51-7.

Figure 25. Continuous Current vs. Ambient Temperature

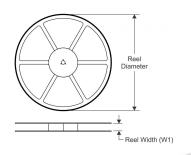

Board Layout

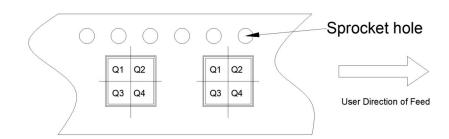
All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VIN, VOUT, and GND will help reduce signal degradation and parasitic effects during dynamic operation as well as improve the thermal performance at high load current.



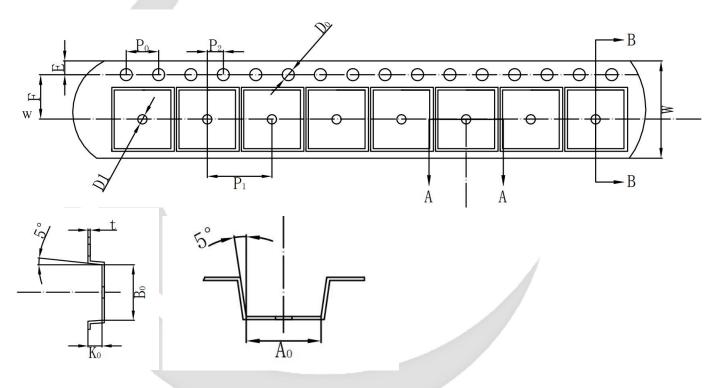
PACKAGE OUTLINE

Size Mark	Min(mm)	Max(mm)	Size Mark	Min(mm)	Max(mm)
A	2.82	3.02	С	1.05	1.15
е	0.9	95 (BSC)	C1	0.03	0.15
b	0.28	0.45	C2	0.12	0.23
В	1.50	1.70	L	0.35	0.55
B1	2.60	3.00	θ	0°	8°


Recommended Footprint



TAPE AND REEL INFORMATION


REEL DIMENSIONS

QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

Device	Package	Pins	SPQ	Reel Diameter (mm)	Reel Width W1	Α0	В0	К0	P1	w	Pin1
GLF1110Q-T1G7	SOT23-5	5	3000	178	9	3.25	3.30	1.38	4	8	Q3
GLF1111Q-T1G7	SOT23-5	5	3000	178	9	3.25	3.30	1.38	4	8	Q3

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

Nano-Current Power IoSmart™ Load Switch

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification		
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.