

Product Specification

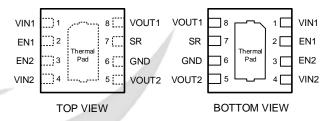
DESCRIPTION

The GLF1411 is an ultra-efficient dual channel load switch with slew rate control. The devices feature the ultra-efficient $I_{Q}Smart^{TM}$ technology that supports some of the low R_{ON} , quiescent currents (I_{Q}), and shutdown currents (I_{SD}) in an input voltage range from 1.5 V to 5.5 V.

The integrated slew rate control can also enhance system reliability by mitigating bus voltage swings during switching events. Where uncontrolled switches can generate high inrush currents that result in voltage droop and/or bus reset events, the GLF1411 slew rate control specifically limits inrush current during turn-on to minimize voltage droop.

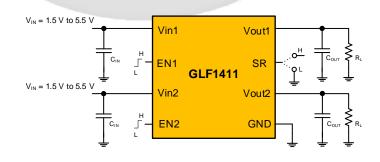
Each channel runs independently controlled by separate EN control pin. Both devices feature an integrated output discharge switch when they are turned off to discharge output capacitors quickly.

FEATURES


Per Channel

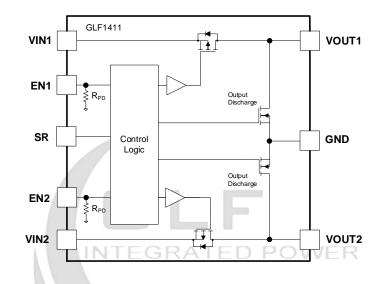
- Supply Voltage Range: 1.5 V to 5.5 V
- Slew Rate Control Pin of Output Rise Time
- Low R_{ON}:
 - 180 mΩ Typ. at 5.5 V_{IN}
 - 220 mΩ Typ. at 3.3 V_{IN}
 - 265 mΩ Typ. at 2.5 V_{IN}
- IOUT Max: 1 A Continuous Output Current
- Ultra-Low Quiescent Current, Iq
 - 10 nA Typ. at 5.5 V_{IN}
 - 5 nA Typ. at 3.3 V_{IN}
 - 4 nA Typ. at 2.5 V_{IN}
- Ultra-Low Stand-by Current, I_{SD}
 - 32 nA Typ. at 5.5 V_{IN}
 - 4 nA Typ. at 3.3 V_{IN}
 - 3 nA Typ. at 2.5 V_{IN}
- Output Discharge Switch When Disabled

APPLICATIONS


- Smart Mobile Devices
- IoT Devices
- Low Power Subsystems

PACKAGE

1.5 mm x 1.5 mm DFN-8L


APPLICATION DIAGRAM

DEVICE ORDERING INFORMATION

Part Number	Top Mark	Ron (Typ) at 5.5 Vเท	Output Discharge	V _{OUT} Rise Time t _R (Typ) at 3.3 V _{IN}	EN Activity
GLF1411-D1G7	DR	180 mΩ	95 Ω	390 µs at SR= High 45 µs at SR= GND	High

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

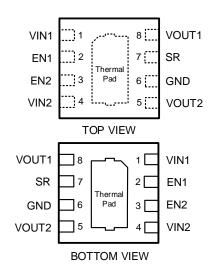


Figure 2. 1.5 mm x 1.5 mm DFN-8L

PIN DEFINITION

Pin	Name	Description
1	VIN1	Switch 1 input.
2	EN1	Active high signal to enable the switch 1
3	EN2	Active high signal to enable the switch 2
4	VIN2	Switch 2 input.
5	VOUT2	Switch 2 output
6	GND	Ground
7	SR	Slew rate control of Vout1 and Vout2. SR = High (Slow) SR = GND (Fast)
8	VOUT1	Switch 1 output
	Thermal pad	Tie to GND

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Para	Min.	Max.	Unit	
VIN, VOUT, EN, SR	Each Pin to GND	-0.3	6	V	
lev-	Maximum Continuous Switch Current	T _A = 25 °C		1	А
Ιουτ	Maximum Continuous Switch Current	T _A = 85 °C		0.8	А
TJ	Maximum Junction Temperature		150	°C	
T _{STG}	Storage Junction Temperature	-65	150	°C	
TA	Ambient Operating Temperature Ran	-40	85	°C	
θ _{JA}	Thermal Resistance, Junction to Amb		190	°C/W	
θJC_Τορ	Thermal Resistance, Junction to Cas		95	°C/W	
ESD	Electrostatic Discharge Hum	an Body Model, JESD22-A114	5		kV
ESD	Capability Char	ged Device Model, JESD22-C101	2		κv

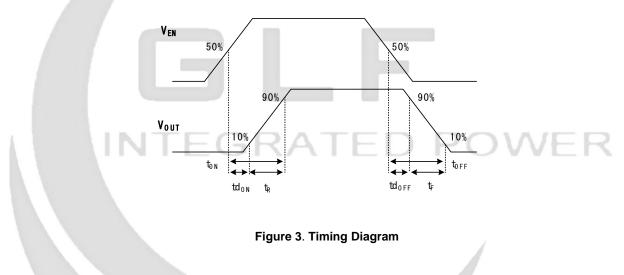
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
Vin	Supply Voltage	1.5	5.5	V
TA	Ambient Operating Temperature	-40	+85	°C

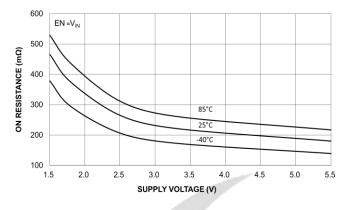
ELECTRICAL CHARACTERISTICS (Per Channel)

Values are at V_{IN} = 3.3 V and T_{A} = 25 °C unless otherwise noted.

Symbol	Parameter		Conditio	ons	Min	Тур	Max	Units
Basic Ope	eration							
		EN = VIN , IOU	JT= 0 mA, VIN= 1.	5 V		3		
		EN = V _{IN} , I _{OUT} = 0 mA, V _{IN} = 1.8 V				3.5		
	Quiescent Current (1)	$EN = V_{IN}$, $I_{OUT} = 0$ mA, $V_{IN} = 2.5$ V				4		
lq	Each Channel	$EN = V_{IN}$, Iou	JT= 0 mA, VIN= 3.	3 V		5	20	nA
		EN = VIN , IOU	JT= 0 mA, VIN =5.		10			
		$EN = V_{IN}$, Iou	JT= 0 mA, VIN= 5.	5 V, Ta= 85 °C ⁽⁴⁾		19		
		EN = 0 V, Iou	JT= 0 mA, VIN= 1.	5 V		2		
		$EN = 0 V, I_{OU}$	JT= 0 mA, VIN= 1.	8 V		2		
	Shut Down Current	EN = 0 V, Iou	JT= 0 mA, VIN= 2.	5 V		3		- 1
Isd Each Chann	Each Channel	$EN = 0 V, I_{OU}$	JT= 0 mA, VIN= 3.	3 V		4	50	nA
		EN = 0 V, Iou	JT= 0 mA, VIN= 5.	5 V		32		
		EN = 0 V, Iou	JT= 0 mA, VIN= 5.	5 V, Ta= 85 °C ⁽⁴⁾		100		
			500 1	Ta= 25 °C		180	240	
	On-Resistance	$V_{IN} = 5.5 V, I_{C}$	_{оυт} = 500 mA	Ta= 85 °C (4)		220		
		VIN= 3.3 V. Io	оит = 500 m A			220	300	
Ron		V _{IN} = 2.5 V, I _{OUT} = 300 mA				265		mΩ
		V _{IN} = 1.8 V, I _{OUT} = 300 mA					_	
					>	375		< .
-		VIN= 1.5 V, IOUT= 100 mA				470		0
Rosc	Output Discharge Resistance	$V_{EN} = 0 V$, IFORCE= 10 mA				95		Ω
Vін V	EN and SR, Logic High Voltage						0.45	V
VIL	EN and SR, Logic Low Voltage	V _{IN} = 1.5 V to					0.45	V
REN	EN Internal Resistance		down Resistance			20		MΩ
	EN Current	EN= V _{IN} or 0	V			0.25		μA
	Characteristics ⁽²⁾						1	
tdON	Turn-On Delay ⁽⁴⁾					840		
t _R		SR= High				570		
tdOFF	Turn-Off Delay ^{(3), (4)}					19		
tF	V _{OUT} Fall Time ^{(3), (4)}		V _{IN} = 1.8 V	-150.0		10		
t _{dON}	Turn-On Delay ⁽⁴⁾		Coυτ=0.1 μF, R	L=130 12		120		
tR	Vout Rise Time ⁽⁴⁾	SR= GND				70		
	Turn-Off Delay $^{(3), (4)}$					20		
tF	V _{OUT} Fall Time ^{(3), (4)}					10		μs
tdON	Turn-On Delay					380		
t _R	V _{OUT} Rise Time	SR= High				390		
tdOFF	Turn-Off Delay ^{(3), (4)}	. Č	V _{IN} = 3.3 V			20		
t _F	V _{OUT} Fall Time ^{(3), (4)}		Coυτ=0.1 μF, R	L=150 Ω		12		
t _{dON}	Turn-On Delay					60		
t _R	Vout Rise Time	SR= GND				45		
tdOFF	Turn-Off Delay (3), (4)					20		


t⊧	Vout Fall Time (3), (4)			12	
t _{dON}	Turn-On Delay (4)			230	
t _R	VOUT Rise Time ⁽⁴⁾			320	
tdOFF	Turn-Off Delay (3), (4)	SR= High		20	
t _F	V _{OUT} Fall Time ^{(3), (4)}		V _{IN} = 5.0 V	12	
t _{dON}	Turn-On Delay (4)		Cout=0.1 μF, RL=150 Ω	43	
t _R	VOUT Rise Time ⁽⁴⁾	SR= GND		30	
t_{dOFF}	Turn-Off Delay (3), (4)	SK= GND		20	μs
t⊧	Vout Fall Time (3), (4)			12]

Notes: 1. I_Q does not include the enable current (I_{EN}) through the pull-down resistor R_{EN} .


2. $t_{ON} = t_{dON} + t_{R}$, $t_{OFF} = t_{dOFF} + t_{F}$ 3. Output discharge path is enabled during off.

4. By design; characterized, not production tested.

TIMING DIAGRAM

TYPICAL PERFORMANCE CHARACTERISTICS (Per Channel)

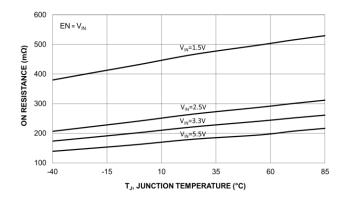


Figure 4. On-Resistance vs. Supply Voltage

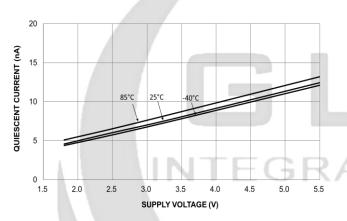


Figure 6. Quiescent Current vs. Supply Voltage

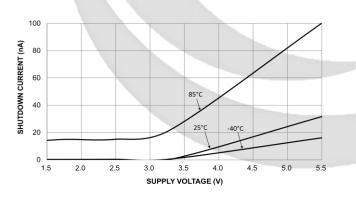


Figure 8. Shutdown Current vs. Supply Voltage

Figure 5. On-Resistance vs. Temperature

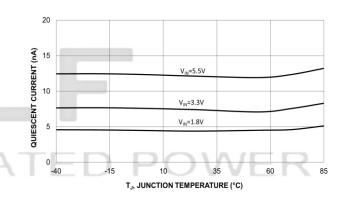


Figure 7. Quiescent Current vs. Temperature

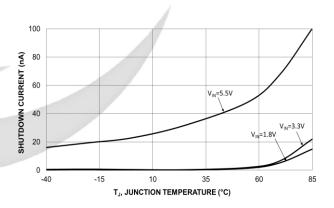


Figure 9. Shutdown Current vs. Temperature

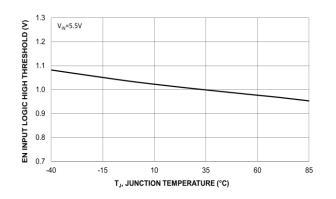


Figure 10. EN Input Logic High Threshold vs. Temperature

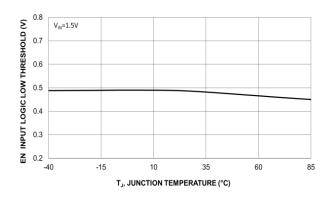


Figure 11. EN Input Logic Low Threshold vs. Temperature

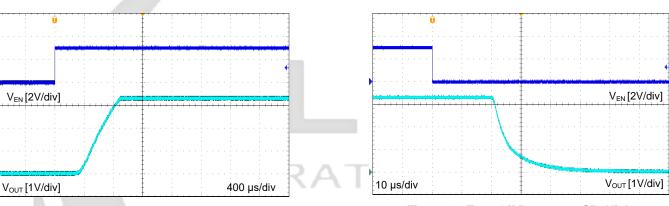


Figure 12. Turn-On Response, SR=High V_{IN} =3.3 V, C_{IN}=0.1 µF, C_{OUT}=0.1 µF, R_L=150 Ω

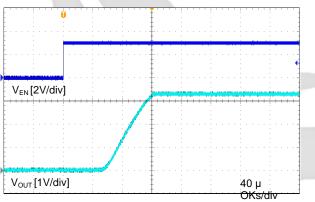


Figure 14. Turn-On Response, SR=GND V_IN=3.3 V, C_IN=0.1 $\mu F,$ C_OUT=0.1 $\mu F,$ RL=150 Ω

Figure 13. Turn-Off Response, SR=High VIN=3.3 V, CIN=0.1 μ F, COUT=0.1 μ F, RL=150 Ω

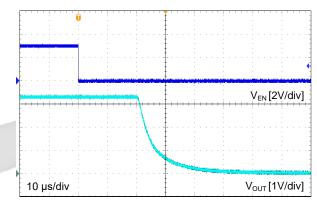


Figure 15. Turn-Off Response, SR=GND V_{IN}=3.3 V, C_{IN}=0.1 \ \mu\text{F}, C_{OUT}=0.1 \ \mu\text{F}, R_{L}=150 \ \Omega

APPLICATION INFORMATION

The GLF1411 is an integrated 1 A, Ultra-Efficient $I_{Q}Smart^{TM}$ dual channel load switch devices with two different slew rate control to limit the inrush current during turn on. Each device is capable of operating independently over a wide input range from 1.5 V to 5.5 V with low on-resistance to reduce conduction loss. In the off state, these devices consume ultra-low leakage current to avoid unwanted standby current and save limited input power. The package is a 1.5 mm x 1.5 mm DFN-8L package, saving space in compact applications.

Input Capacitor

A capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

Output Capacitor

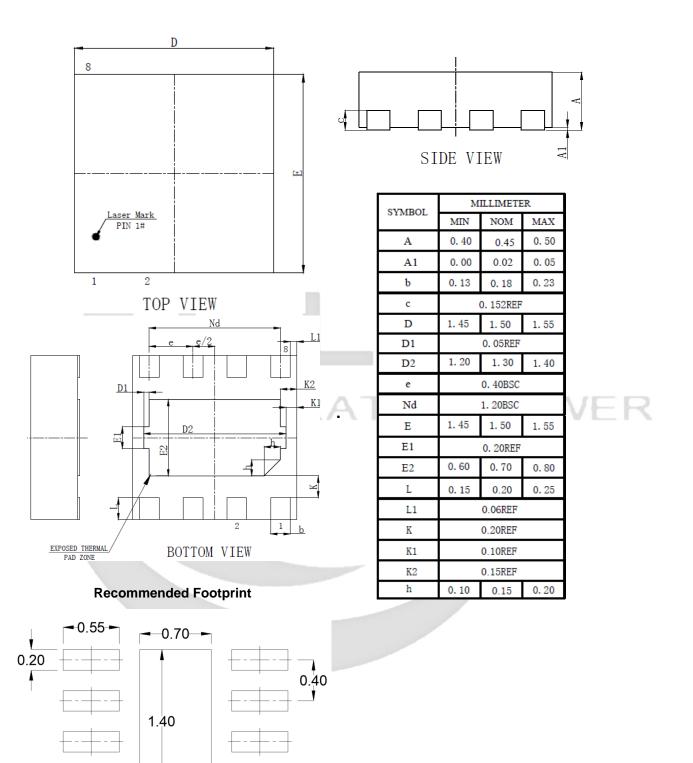
An output capacitor is recommended to mitigate voltage undershoot on the output pin when the switch is turning off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. The C_{OUT} capacitor should be spaced close to the VOUT and GND pins.

EN pin

The GLF1411 can be activated by forcing EN pin high level. Note that the EN pin has an internal pull-down/ pull-up resistor to help pull the main switch to a known "off state" when no EN signal is applied from an external controller.

Slew Rate Control of Output Voltage

The slew rate of the output voltage of both channels is set by the SR pin when the GLF1411 starts up. The output voltage rise time (t_R) is slowed down with the SR pin tied to a higher potential than the logic high voltage (V_{IH}) and it becomes fast when the SR pin is grounded. See the switching performance in the electrical characteristics table as well as waveforms of Fig 12 ~ Fig 15. It provides a flexible out rising time to avoid inrush current in various applications with different output capacitance.

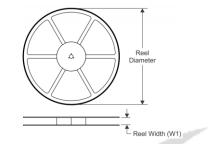

Output Discharge Function

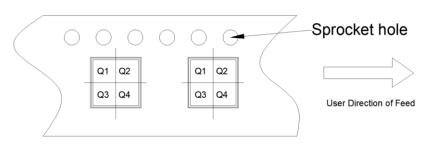
The GLF1411 have an internal discharge N-channel FET switch on the VOUT pin. When EN signal turns the main power FET to an off state, the N-channel switch turns on to discharge an output capacitor quickly

Board Layout

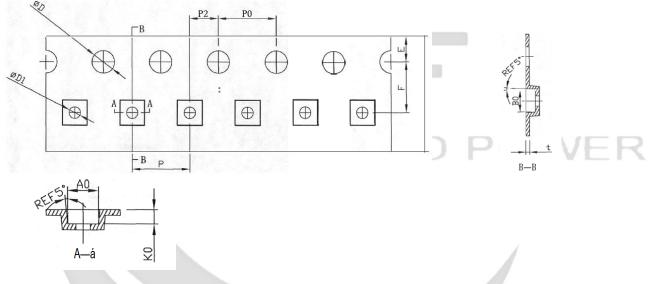
All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VIN, VOUT, and GND will help reduce signal degradation and parasitic effects during dynamic operation as well as improve the thermal performance at high load current.

PACKAGE OUTLINE


1.10


1.65

TAPE AND REEL INFORMATION


REEL DIMENSIONS

QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

Device	Package	Pins	SPQ	Reel Diameter (mm)	Reel Width W1	A0	B0	K0	Ρ	w	Pin1
GLF1411-D1G7	DFN1.5x1.5	8	3000	178	8.6	1.7	1.7	0.76	4	8	Q1

Remark:

A0: Dimension designed to accommodate the component width

- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness

W: Overall width of the carrier tape

P1: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.