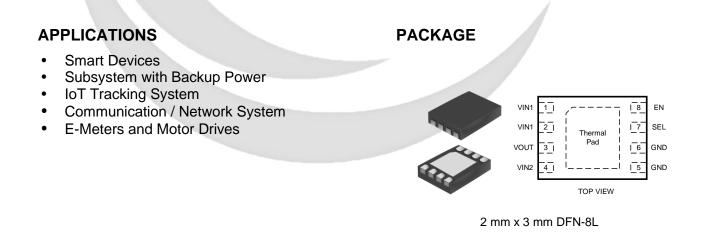
GLF4003 Ultra-low IQ, Asymmetrical Power Mux IC with Priority, Auto & Manual Input Selection Product Specification

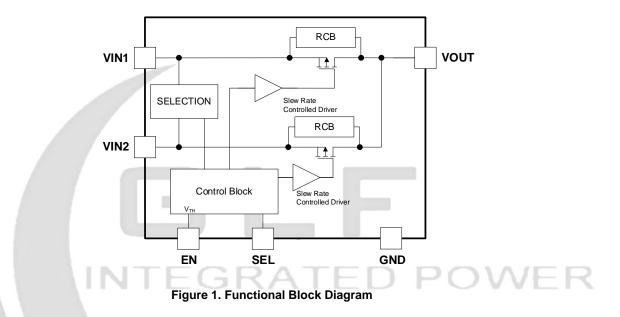
DESCRIPTION

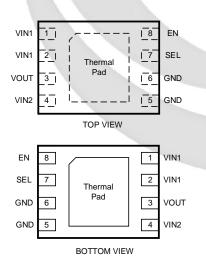

The GLF4003 is an integrated power multiplexer IC with dual independent power switches connected to a single output pin to enable seamless transition between two input sources. The GLF4003 features asymmetrical power FET characteristics. Channel 1 (VIN1) provides lower conduction resistance to support 2.0 A continuous current capability. The current rating of another channel (VIN2) is 1.5 A. It is an ideal solution for a power system with an internal back up power source.

The GLF4003 provides an automatic selection, a manual selection and VIN1 priority selection mode. The switching of these three modes is executed by combining the EN and SEL pin settings. The EN input pin has an internal threshold voltage to offer a preference to select the channel 1 (VIN1) power source. In the automatic input selection mode, the GLF4003 automatically selects a higher input voltage source between two input power sources.

The GLF4003 prevents cross conduction current between two input sources. When VOUT is higher than VIN, the GLF4003 prevents the reverse current from the output to the input, no matter which input supply is applied.

FEATURES


- Two-Input and Single-Output Power Multiplexer IC
- Auto and Manual Input Selection Mode
- VIN1 Priority Selection Mode
- Wide Input Range: 1.5 V to 4.8 V
- Low R_{ON}
 - $\circ~$ Channel 1, VIN1 = 45 m Ω Typ at 4.8 V_{IN1}
 - $\circ~$ Channel 2, VIN2 = 77 m Ω Typ at 4.8 V_{IN2}
- IOUT Max
 - Channel 1 = 2.0 A
 - Channel 2 = 1.5 A
- Ultra-Low Supply Current at Operation
 - o I_Q : 1.1 µA Typ at 4.8 V_{IN}
- Ultra-Low Stand-by Current
 - \circ ~ I_{SD} : 400 nA Typ at 4.8 V_{IN}
- Reverse Current Blocking Protection
- Operating Temperature Range:
 - -40 °C to 85 °C


PRODUCT INFORMATION

	-	Channel	1 (VIN1)	Channel	2 (VIN2)		
Part Number	Top Mark	Ron1 at 4.8 Vin	Ι _{Ουτ}	R _{0N2} at 4.8 V _{IN}	Ι _{Ουτ}	Package	
GLF4003-D3G7	HG	45 mΩ	2.0 A	77 mΩ	1.5 A	DFN 2x3-8L	

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

PIN DEFINITION

Pin #	Name	Description
1, 2	VIN1	IC Input 1
3	VOUT	IC Output
4	VIN2	IC Input 2
5, 6	GND	Ground
7, 8	SEL, EN	Logic control, SEL and EN high and low combinations determine the selection mode. Refer to table 1.

Figure 2. 2 mm x 3mm DFN-8L

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Min.	Max.	Unit	
Vin1, Vin2, Vout	Each Pin Voltage Range to	GND	-0.3	6	V
Ven, Vsel	Control Pin Voltage		-0.3	6	V
laum.	Continuous Current through	Continuous Current through VIN1			
Ιουτ	Continuous Current through		1.5	А	
TJ	Maximum Junction Tempera		125	°C	
T _{STG}	Storage Junction Temperate	-65	150	°C	
T _A	Ambient Operating Temperature Range			85	°C
θја	Thermal Resistance, Junction to Ambient			110	°C/W
	Electrostatic Discharge	Human Body Model, JESD22-A114	±2		L\ /
ESD	Capability	Charged Device Model, JESD22-C101	±2		kV

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
V _{IN1} , V _{IN2}	Input Voltage	1.5	4.8	V
V _{EN} , V _{SEL}	Control Pin Voltage	0	4.8	V

INTEGRATED POW

ELECTRICAL CHARACTERISTICS

 $V_{IN1} = V_{IN2} = 1.5$ V to 4.8 V and $T_A = 25$ °C. Unless otherwise noted

Symbol	Parameter	Conditions			Тур	Max	Units		
Basic Operation									
I _{STBY_VIN1,2} VIN Unselect Channel Standby Current		V _{IN1} = 4.8 V, I _{OUT} = 0 mA SEL=VIN1, EN= 0 V, VOUT=VIN2 or	T _A = 25 °C		0.9	1.1			
	$V_{IN2} = 4.8 \text{ V}, I_{OUT} = 0 \text{ mA}$ EN=SEL=VIN2, VOUT=VIN1	T _A = 85 °C		1.2					
_		$V_{IN1} = 4.8 \text{ V}, I_{OUT} = 0 \text{ mA}$ EN=SEL=VIN1, VOUT=VIN1	T _A = 25 °C		1.1	1.6	μA		
I _{Q_VIN1,2} VIN Quiescen	VIN Quiescent Current	or V _{IN2} = 4.8 V, I _{OUT} = 0 mA EN=VIN1, SEL= 0 V, VOUT=VIN2	T _A = 85 °C		1.5				
	VIN Shutdown Current	V _{IN1,2} = 4.8 V, V _{SEL} = 0 V, V _{EN} = 4.8 V	$T_A = 25$ °C		0.4	0.7			
SD_VIN1,2	VIN Shutdown Current	Vout = High-Z	T _A = 85 °C		0.9		μA		
I _{EN} , I _{SEL}	EN and SEL Pin Leakage	$V_{EN} = V_{SEL} = 4.8 V$			4		nA		

GLF4003

Ultra-low I_Q, Asymmetrical Power Mux IC with Priority, Auto & Manual Input Selection

Symbol	Parameter		Conditions		Min	Тур	Max	Units
			000 1	$T_A = 25$ °C		45	52	
		$V_{IN1} = 4.8 V, I_{O}$	T _A = 85 °C		54			
			000 4	T _A = 25 °C		49	56	
	Channel 1	$V_{IN1} = 3.3 V, I_0$	_{UT} = 200 mA	T _A = 85 °C		58		
	On-Resistance			T _A = 25 °C		62	70	
		V _{IN1} = 1.8 V, Io	_{UT} = 200 mA	T _A = 85 °C		75		
				T _A = 25 °C		71	79	
_		$V_{IN1} = 1.5 V, I_0$	_{UT} = 200 mA	T _A = 85 °C		83		
R _{ON}				$T_A = 25$ °C		77	84	mΩ
		V _{IN2} = 4.8 V, Io	ut = 200 mA	T _A = 85 °C		91		
				T _A = 25 °C		84	90	
	Channel 2	$V_{IN2} = 3.3 V, I_0$	_{UT} = 200 mA	T _A = 85 °C		99		
	On-Resistance			T _A = 25 °C		109	115	
		$V_{IN2} = 1.8 V, I_O$	_{UT} = 200 mA	T _A = 85 °C		132		
		V _{IN2} = 1.5 V, I _{OUT} = 200 mA		T _A = 25 °C		125	132	-
				T _A = 85 °C		145		
		VIN1 or VIN2 = 1	.5 V to 4.8 V			1.0	1.1	V
V_{TH}	EN Pin Threshold Voltage	Hysteresis				50		mV
V _{IH}	SEL Input Logic High Voltage	V_{IN1} or $V_{IN2} = 1.5$ V to 4.8 V			1.2			
V _{IL}	SEL Input Logic Low Voltage	V_{IN1} or $V_{IN2} = 1.5$ V to 4.8 V					0.3	V
	Current Blocking Protection							
t _{RCB}	RCB Response Time (1)	Vout > Selecte	d V _{IN} + 1 V			2		μs
VRCB_TH	RCB Protection Threshold	Vout – Vin	ATE	D P	\cap	110		mV
VRCB_RL	RCB Protection Release	Vin – Vout				45		mV
IRCB	RCB activation current ⁽¹⁾					1.44		Α
_	g Characteristics							
V _{TR}	Auto Input Selection Trigger ⁽¹⁾	V _{INX} - V _{INY} , In	automatic select	ion mode		120		mV
	Switching Over time	V _{IN1} to V _{IN2}	V _{IN1} = 4.2 V, V _I		1	35		
t _{SW}	In Manual Mode ⁽¹⁾	V _{IN2} to V _{IN1}	$C_{OUT} = 10 \ \mu F,$			17		
		V _{IN1} = 4.2 V			1	1123		
	Turn-On Delay time	V _{IN1} = 3.3 V				1107		
	Channel 1	V _{IN1} = 1.8 V				1102		
t dON		$V_{IN2} = 4.2 V$				718		
	Turn-On Delay time	$V_{IN2} = 3.3 V$				712		-
	Channel 2	$V_{IN2} = 1.8 V$	Соит = 10 µF			711		μs
		$V_{IN2} = 4.2 V$	$R_{L} = 100 \ \Omega$			1480		
	VOUT Rise Time	$V_{IN1} = 3.3 V$				1226		
	Channel 1	$V_{IN1} = 0.8 V$ $V_{IN1} = 1.8 V$				828		
t _R		$V_{IN1} = 1.0$ V $V_{IN2} = 4.2$ V				872		
		V IINZ - 7.2 V						
	VOUT Rise Time Channel 2	$V_{IN2} = 3.3 V$				729		

Notes: 1. By design; characterized, not production tested.

APPLICATION DIAGRAM

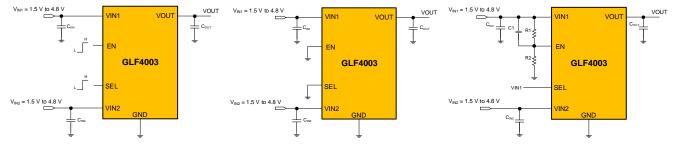
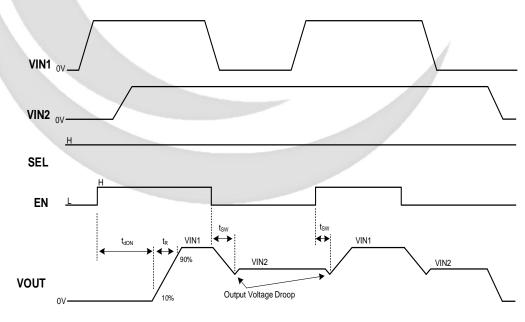


Figure 3. Manual Selection Mode



Mode SEL EN VOUT Function High $> V_{TH}$ VIN1 VIN1 is selected VIN2 < Vтн VIN2 is selected High Manual > Vтн Low High-Z Both channels are off Higher voltage Auto Low < Vтн Auto-Input selection between VIN1 and VIN2 > VTH by resistor VIN1 VIN1 is selected Connect to divider from VIN1 **VIN1** Priority VIN1 < V_{TH} by resistor VIN2 VIN2 is selected divider from VIN1

TRUTH TABLE AND TIMING DIAGRAM

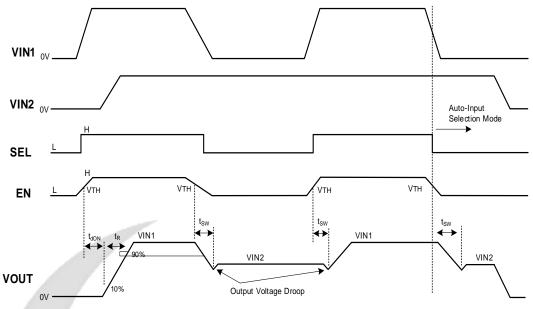

Note) VINX or VINY ≥ 1.5 V, High = VSEL > VIH, LOW = VSEL < VIL

Table 1. Truth Table of Input Source Selection

Note) High = $V_{SEL} > V_{IH}$, $V_{EN} > V_{TH}$; Low = $V_{SEL} < V_{IL}$, $V_{EN} < V_{TH}$

Figure 6. Timing Diagram, Manual Mode (Figure 3) with EN controlled by GPIO

Note) High = $V_{SEL} > V_{IH}$, $V_{EN} > V_{TH}$; Low = $V_{SEL} < V_{IL}$, $V_{EN} < V_{TH}$

Figure 7. Timing Diagram, VIN1 Priority Selection Mode (Figure 5) with SEL tied to VIN1

TYPICAL PERFORMANCE CHARACTERISTICS

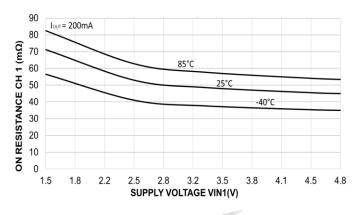


Figure 8. On-Resistance vs. Supply Voltage, Channel 1

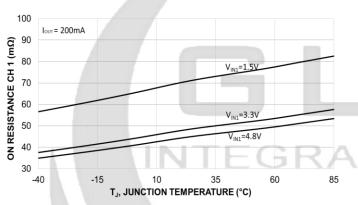


Figure 10. On-Resistance vs. Temperature, Channel 1

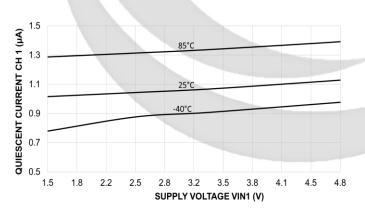


Figure 12. VIN1 Quiescent Current vs. Supply Voltage

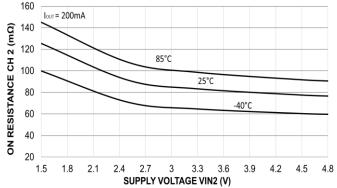


Figure 9. On-Resistance vs. Supply Voltage, Channel 2

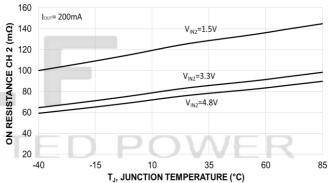


Figure 11. On-Resistance vs. Temperature, Channel 2

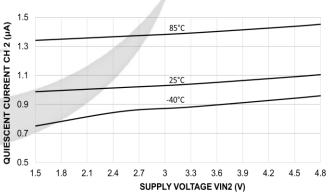
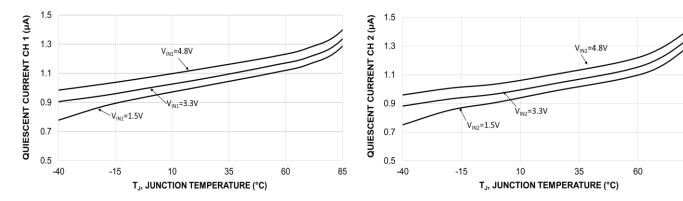



Figure 13. VIN2 Quiescent Current vs. Supply Voltage

85

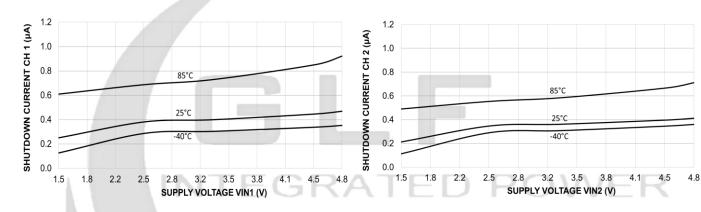


Figure 16. VIN1 Shutdown Current vs. Supply Voltage

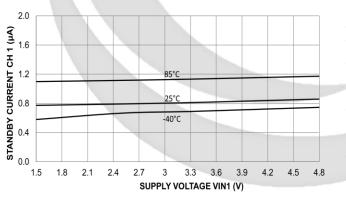


Figure 18. VIN1 Standby Current vs. Supply Voltage

Figure 17. VIN2 Shutdown Current vs. Supply Voltage

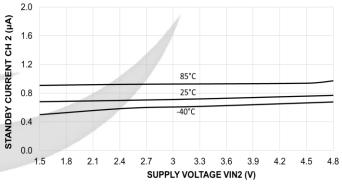
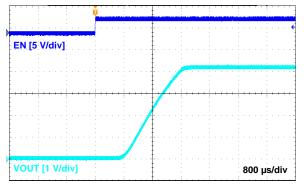



Figure 19. VIN2 Standby Current vs. Supply Voltage

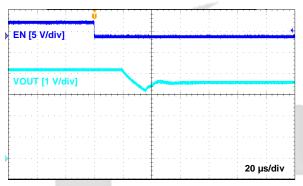
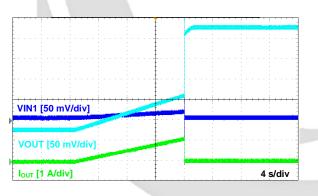
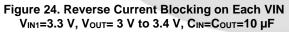




Figure 22. VOUT Switchover from 4.2 V to 3.6 V V_{IN1}=4.2 V, V_{IN2}=3.6 V, C_{IN}=C_{OUT}=10 μ F, R_L=10 Ω SEL = VIN1, EN controlled by GPIO

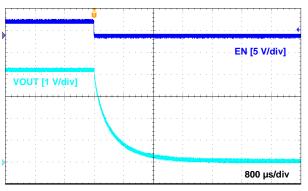


Figure 21. Turn-Off Response, Channel 1 $V_{\text{IN1}}{=}4.2$ V, $C_{\text{IN}}{=}C_{\text{OUT}}{=}10$ $\mu F,$ $R_{\text{L}}{=}100$ $\Omega,$ SEL=High

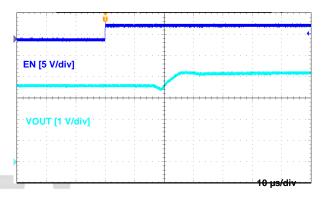
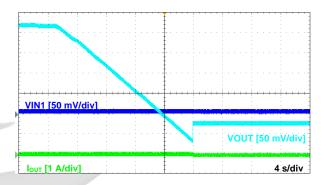
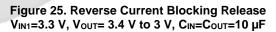




Figure 23. VOUT Switchover from 3.6 V to 4.2 V V_{IN1}=4.2 V, V_{IN2}=3.6 V, C_{IN}=C_{OUT}=10 μF, R_L=10 Ω SEL = VIN1, EN controlled by GPIO

APPLICATION INFORMATION

The GLF4003 is a fully integrated power mux IC with the input voltage range from 1.5 V to 4.8 V. It has asymmetrical two channels and a fixed slew rate control to limit the inrush current during turn on. It also has very low on-resistance to reduce conduction loss. In the off state, it consumes very low leakage current to avoid unwanted standby current and save input power supply.

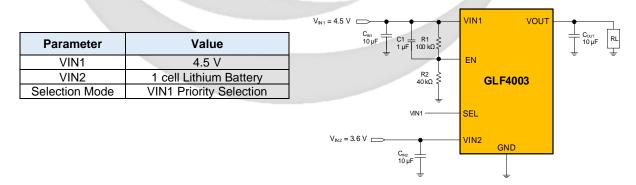
Input Source Selection

According to the state of SEL and EN pins, the GLF4003 offers an automatic selection, a manual selection and VIN1 priority selection mode. In each mode, the VOUT connects to one input source. Do not leave both SEL and EN pins floating.

Mode	SEL	EN	VOUT
	High	> Vтн	VIN1
Manual	High	< Vth	VIN2
	Low	> V _{TH}	High-Z
Auto	Low	< Vth	Higher voltage between VIN1 and VIN2

Table 2.	Manual and	Automatic	Selection Mode

For applications, where a General-Purpose Input/Output (GPIO) pin is used to select the input source (refer to Figure 3), the GPIO pin connects directly to the EN pin, and the SEL pin is set high. When the GPIO pin is high, VIN1 is selected as the input. Conversely, when the GPIO pin is low, VIN2 is selected.


For applications, If both EN & SEL are low (refer to Figure 4), the GLF4003 will choose a higher input voltage source to VOUT automatically.

In VIN1 priority selection mode (refer to Figure 5 and Table 3), the SEL pin is connected to VIN 1 node and the EN pin is connected to the midpoint of a voltage divider formed by two resistors. The VIN1 priority selection mode operates without GPIO control. The C1 is used to stabilize the EN pin state at around $V_{TH.}$ 1 µF capacitor is recommended for the C1. When VIN1 is applied and the EN pin voltage is higher than the threshold voltage (V_{TH}), the VOUT is powered by VIN1. As the VIN1 voltage drops, if the voltage at the EN pin falls below V_{TH} , VOUT automatically switches over to the backup channel VIN2.

Mode	VIN1	VIN2	SEL	EN	VOUT
VIN1	≥ 1.5 V	Х	Connect	> V _{TH} by resistor divider from VIN1	VIN1
Priority	≥ 1.5 V	≥ 1.5 V	to VIN1	< VTH by resistor divider from VIN1	VIN2

Table 3. VIN1 Priority Selection

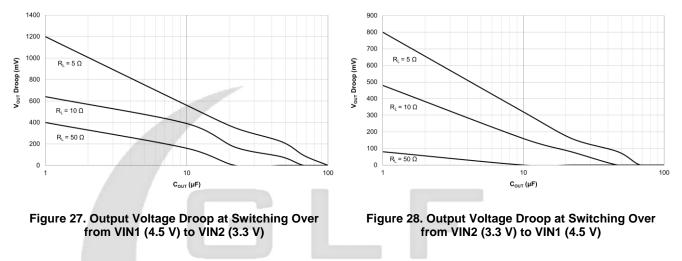
Design Example for Switching-Over Trigger Voltage Calculation:

Figure 26. Design Example for V_{SW_TRG} Calculation

The value of the switching-over trigger voltage is determined by the following equation.

 $V_{SW_{TRG}} = V_{TH} x (1 + R1 / R2)$

Where, V_{SW_TRG}: Switching-over trigger voltage when VIN1 is unplugged

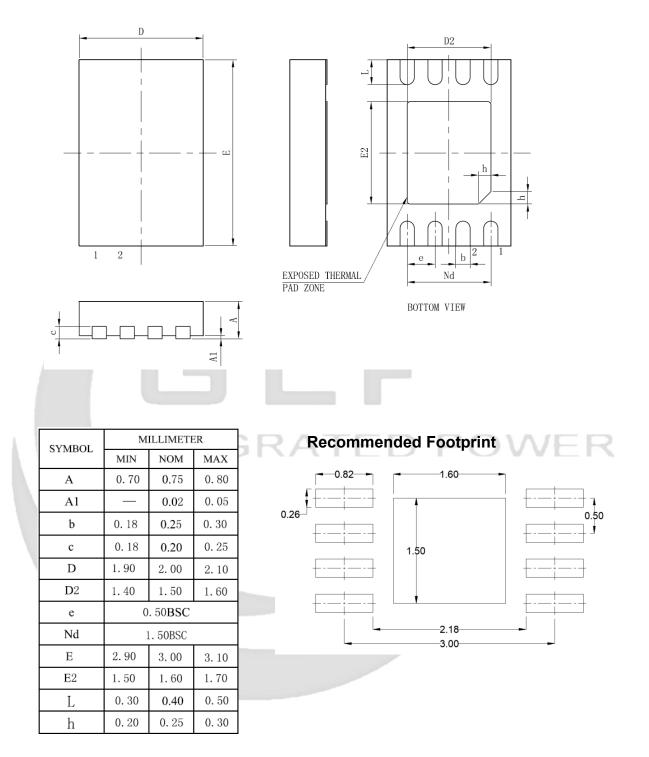

VTH: EN pin threshold voltage

GLF4003 Ultra-low IQ, Asymmetrical Power Mux IC with Priority, Auto & Manual Input Selection

For downstream systems requiring power supply switching with minimal output voltage drop, the GL4003 can reduces the voltage drop during transition from the primary input (VIN1) to the secondary input (VIN2) upon removal of VIN1. In this example, the switching trigger voltage is set to 3.5 V (when 4.5 V is removed) using resistors R1 (100 k Ω) and R2 (40 k Ω).

Output Voltage Drop at Switching Over

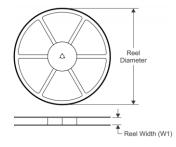
During the switching event, the output voltage drop is influenced by both the load resistance and the output capacitance. A lower load resistance at the switching point will result in a larger voltage drop. To mitigate this drop when a significant load current is needed during the transition, a sufficiently large bulk output capacitor is recommended.

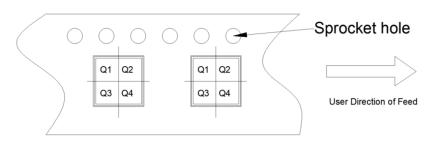

Reverse Current Blocking

The reverse current blocking protection will be enabled when either of the input voltage (VIN1 or VIN2) exceeds its minimum rating. The reverse current blocking protection triggers when the output voltage rises above an input voltage plus the reverse current blocking threshold (V_{RCB_TH}). The main FET immediately shuts off to prevent reverse current flow. It's important to note that some reverse current might exist before V_{RCB_TH} is reached. Normal operation resumes when the output voltage falls below the input minus the reverse current blocking release voltage (V_{RCB_RL}). An additional clamping component and a high output capacitance are recommended to safeguard against potential damage from high output voltage spikes.

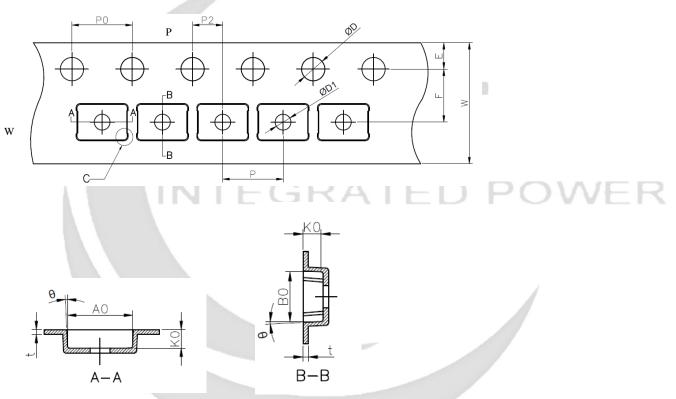
Board Layout

All the external components should be placed to GLF4003 as close as possible. All traces should be as short as possible to minimize parasitic inductance. Wide traces of VIN, VOUT and GND can reduce parasitic effects under dynamic operations to improve thermal performance at high current loading.


PACKAGE OUTLINE



TAPE AND REEL INFORMATION


REEL DIMENSIONS

QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

Device	Package	Pins	SPQ	Reel Diameter (mm)	Reel Width W1	A0	В0	K0	Ρ	w	Pin1
GLF4003-D3G7	DFN 2x3-8L	8	3000	180	9	3.25	2.25	0.95	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

Ultra-low Iq, Asymmetrical Power Mux IC with Priority, Auto & Manual Input Selection

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Parameters including the typical, minimum, and maximum values are desired, or target. GLF reserves the right to change contents at any time without warning or notification. A target specification will not guarantee the future production of the device.	Design / Development
Preliminary Specification	This is a draft version of a product specification which is under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification will not guarantee the future production of the device.	Qualification
Product Specification	This document represents the characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, misuse, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.